

Regen Design Guide

Unidrive M600 Unidrive M700 Unidrive M701

Part Number: 0478-0366-04

Issue: 4

Original Instructions

For the purposes of compliance with the EU Machinery Directive 2006/42/EC, the English version of this manual is the Original Instructions.

Manuals in other languages are Translations of the Original Instructions.

Documentation

Manuals are available to download from the following locations: http://www.drive-setup.com/ctdownloads

The information contained in this manual is believed to be correct at the time of printing and does not form part of any contract. The manufacturer reserves the right to change the specification of the product and its performance, and the contents of the manual, without notice.

Warranty and Liability

In no event and under no circumstances shall the manufacturer be liable for damages and failures due to misuse, abuse, improper installation, or abnormal conditions of temperature, dust, or corrosion, or failures due to operation outside the published ratings. The manufacturer is not liable for consequential and incidental damages. Contact the supplier of the dive for full details of the warranty terms.

Environmental policy

Control Techniques Ltd operates an Environmental Management System (EMS) that conforms to the International Standard ISO 14001.

Further information on our Environmental Policy can be found at: http://www.drive-setup.com/environment

Restriction of Hazardous Substances (RoHS)

The products covered by this manual comply with European and International regulations on the Restriction of Hazardous Substances including EU directive 2011/65/EU and the Chinese Administrative Measures for Restriction of Hazardous Substances in Electrical and Electronic Products.

Disposal and Recycling (WEEE)

When electronic products reach the end of their useful life, they must not be disposed of along with domestic waste but should be recycled by a specialist recycler of electronic equipment. Control Techniques products are designed to be easily dismantled into their major component parts for efficient recycling. The majority of materials used in the product are suitable for recycling.

Product packaging is of good quality and can be re-used. Large products are packed in wooden crates. Smaller products are packaged in strong cardboard cartons which have a high recycled fibre content. Cartons can be re-used and recycled. Polythene, used in protective film and bags for wrapping the product, can be recycled. When preparing to recycle or dispose of any product or packaging, please observe local legislation and best practice.

REACH legislation

EC Regulation 1907/2006 on the Registration, Evaluation, Authorisation and restriction of Chemicals (REACH) requires the supplier of an article to inform the recipient if it contains more than a specified proportion of any substance which is considered by the European Chemicals Agency (ECHA) to be a Substance of Very High Concern (SVHC) and is therefore listed by them as a candidate for compulsory authorisation.

Further information on our compliance with REACH can be found at: http://www.drive-setup.com/reach

Registered Office

Nidec Control Techniques Ltd The Gro

Newtown

Newtown

Powys

SY16 3BE

UK

Registered in England and Wales. Company Reg. No. 01236886.

Copyright

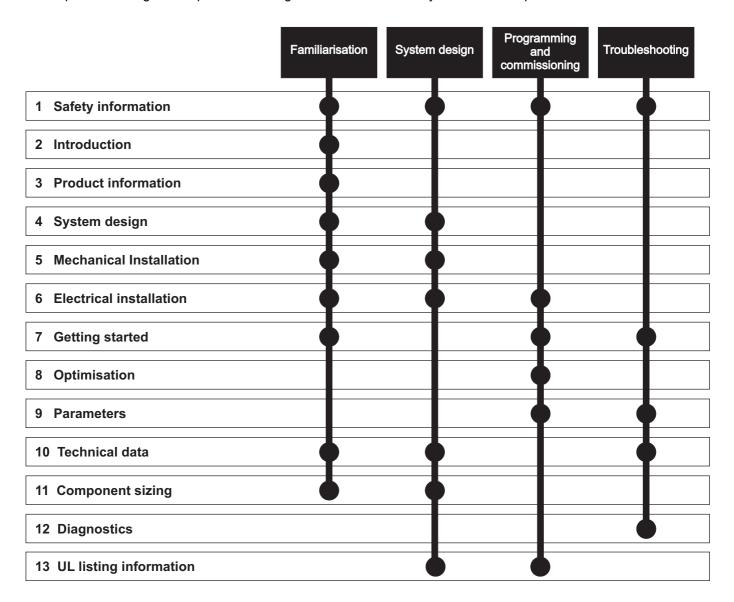
The contents of this publication are believed to be correct at the time of printing. In the interests of a commitment to a policy of continuous development and improvement, the manufacturer reserves the right to change the specification of the product or its performance, or the contents of the guide, without notice.

All rights reserved. No parts of this guide may be reproduced or transmitted in any form or by any means, electrical or mechanical including photocopying, recording or by an information storage or retrieval system, without permission in writing from the publisher.

Copyright © November 2018 Nidec Control Techniques Ltd

How to use this guide

This user guide provides complete information for installing and operating a Unidrive M from start to finish.


The information is in logical order, taking the reader from receiving the drive through to fine tuning the performance.

NOTE

There are specific safety warnings throughout this guide, located in the relevant sections. In addition, Chapter 1 *Safety information* contains general safety information. It is essential that the warnings are observed and the information considered when working with or designing a system using the drive.

This guide should be read in-line with the relevant *Control User Guide* also, which contains additional information which may be required whilst designing and commissioning a regen system.

This map of the user guide helps to find the right sections for the task you wish to complete:

Contents

1	Safety information	8	5	Mechanical Installation	76
1.1	Warnings, Cautions and Notes	8	5.1	Safety information	76
1.2	Important safety information. Hazards.		5.2	Planning the installation	
	Competence of designers and installers	8	5.3	Regen component dimensions	77
1.3	Responsibility	8	5.4	External EMC filter	
1.4	Compliance with regulations	8	5.5	Combined Regen input filters (combi filter)	97
1.5	Electrical hazards		5.6	Cubicle design and drive ambient	
1.6	Stored electrical charge	8		temperature	104
1.7	Mechanical hazards		_		
1.8	Access to equipment	8	6	Electrical Installation	105
1.9	Environmental limits	8	6.1	Power connections	106
1.10	Hazardous environments	8	6.2	Supply requirements	117
1.11	Motor	9	6.3	Cable and fuse ratings	117
1.12	Mechanical brake control	9	6.4	EMC (Electromagnetic compatibility)	126
1.13	Adjusting parameters	9	6.5	External EMC filter	128
1.14	Electromagnetic compatibility (EMC)	9	6.6	Control connections	133
2	Introduction	10	7	Getting started	139
2.1	Regen operation	10	7.1	Regen parameter settings	139
2.2	Advantages of Unidrive M operating in		7.2	Regen drive sequencing	139
	Regen mode	10	7.3	Regen drive commissioning / start-up	141
2.3	Principles of operation		7.4	Motoring drive commissioning	141
2.4	Power flow		_		
2.5	Synchronization		8	Optimization	142
2.6	Current trimming		8.1	Power feed-forward compensation	
2.7	Regen system configurations			(Pr 03.010)	
2.8	Regen drive system types		8.2	Regen controllers	
_			8.3	Current loop gains	143
3	Product Information	15	8.4	Voltage controller proportional gain Kp	
3.1	Model number	15		(Pr 03.006)	
3.2	Nameplate description	16	8.5	Power factor correction (Pr 04.008)	
3.3	Ratings		8.6	Current trimming	
3.4	Drive features	20	8.7	Voltage ramp time control (Pr 03.022)	
3.5	Unidrive M Rectifier		8.8	Frequency limits	
3.6	Unidrive M Rectifier technical data		8.9	Voltage limits	
3.7	Options		8.10	Supply voltage detection	
3.8	Items supplied with the drive		8.11	Island detection	
3.9	Regen components		8.12	Synchronization headroom (Pr 03.035)	
3.10	Combined Regen input filters (combi filter)	39	8.13	Harmonic reduction	
4	System design	40		Active current reference	
4	System design			Current feedback filter disable (Pr 04.021)	
4.1	Introduction		8.16	DC bus voltage high range (Pr 05.023)	145
4.2	Power connections	40			
4.3	Switching frequency filter capacitor wiring configuration to support 8 % THDv				
	(Total Harmonic Distortion Voltage)	41			
4.4	Switching frequency filter capacitor wiring				
	. , , ,	5 1			
	configuration to support 2 % THDv	34			
4.5	configuration to support 2 % THDv Cable lengths				
		67			

9	Parameters1	
9.1	Parameter ranges and variable maximums	147
9.2	Menu 0: Basic parameters	152
9.3	Menu 3: Regen Control	153
9.4	Menu 4: Current control	164
9.5	Menu 5: Regen Status	170
9.6	Menu 6: Sequencer and Clock	173
9.7	Menu 7: Analog I/O	
9.8	Menu 8: Digital I/O	
9.9	Menu 9: Programmable logic, motorized pot	
	and binary sum	
9.10	Menu 10: Status and trips	
9.11	Menu 11: General drive set-up	234
9.12	Menu 12: Threshold detectors and variable	250
0.40	selectors	
9.13	Menu 14: User PID controller	
9.14	Menus 15, 16 and 17: Option module set-up	
9.15	Menu 18: Application menu 1	
9.16	Menu 19: Application menu 2	
9.17	Menu 20: Application menu 3	
9.18	Menu 22: Additional Menu 0 set-up	274
10	Technical data2	76
10.1	Drive	
10.2	Supply requirements	286
10.3	Protection	287
10.4	Component data	
10.5	Electromagnetic compatibility (EMC)	303
10.6	Combined Regen input filters (combi filter)	306
11	Component sizing3	808
11.1	Switching frequency filter (SFF) protection	308
11.2	Softstart resistor sizing	308
11.3	Thermal / magnetic overload protection for	
	soft start circuit	311
12	Diagnostics3	15
12.1	Status modes (Keypad and LED status)	315
12.2	Trip indications	
12.3	Identifying a trip / trip source	
12.4	Trips, Sub-trip numbers	
12.5	Internal / Hardware trips	
12.6	Alarm indications	
12.7	Status indications	
12.8	Programming error indications	
12.9	Displaying the trip history	
	Behavior of the drive when tripped	
	FF	-

13	UL Information	340
13.1	UL file reference	340
13.2	Option modules, kits and accessories	340
13.3	Enclosure ratings	340
13.4	Mounting	340
13.5	Environment	340
13.6	Electrical Installation	340
13.7	Motor overload protection and thermal	
	memory retention	34′
13.8	External Class 2 supply	34′
13.9	Modular Drive Systems	34′
13.10	Requirement for Transient Surge	
	Suppression	34

EU Declaration of Conformity

Nidec Control Techniques Ltd, The Gro, Newtown, Powys, SY16 3BE, UK

This declaration is issued under the sole responsibility of the manufacturer. The object of the declaration is in conformity with the relevant European Union harmonization legislation. The declaration applies to the variable speed drive products shown below:

Model number	Interpretation	Nomenclature aaaa - bbc ddddde
aaaa	Basic series	M100, M101, M200, M201, M300, M400, M600, M700, M701, M702, M708, M709, M751, M753, M754, F300, H300, E200, E300, HS30, HS70, HS71, HS72, M000, RECT
bb	Frame size	01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 11
С	Voltage rating	1 = 100 V, 2 = 200 V, 4 = 400 V, 5 = 575 V, 6 = 690 V
ddddd	Current rating	Example 01000 = 100 A
е	Drive format	A = 6P Rectifier + Inverter (internal choke), D = Inverter, E = 6P Rectifier + Inverter (external choke), T = 12P Rectifier + Inverter (external choke)

The model number may be followed by additional characters that do not affect the ratings.

The variable speed drive products listed above have been designed and manufactured in accordance with the following European harmonized standards:

EN 61800-5-1:2007	Adjustable speed electrical power drive systems - Part 5-1: Safety requirements - Electrical, thermal and energy
EN 61800-3: 2004+A1:2012	Adjustable speed electrical power drive systems - Part 3: EMC requirements and specific test methods
EN 61000-6-2:2005	Electromagnetic compatibility (EMC) - Part 6-2: Generic standards - Immunity for industrial environments
EN 61000-6-4: 2007+ A1:2011	Electromagnetic compatibility (EMC) - Part 6-4: Generic standards - Emission standard for industrial environments
EN 61000-3-2:2014	Electromagnetic compatibility (EMC) - Part 3-2: Limits for harmonic current emissions (equipment input current ≤ 16 A per phase)
EN 61000-3-3:2013	Electromagnetic compatibility (EMC) - Part 3-3: Limitation of voltage changes, voltage fluctuations and flicker in public, low voltage supply systems, for equipment with rated current ≤ 16 A per phase and not subject to conditional connection

EN 61000-3-2:2014 Applicable where input current < 16 A. No limits apply for professional equipment where input power ≥ 1 kW.

These products comply with the Restriction of Hazardous Substances Directive (2011/65/EU), the Low Voltage Directive (2014/35/EU) and the Electromagnetic Compatibility Directive (2014/30/EU).

les

Jonathan Holman-White

Director of R&D Date: 17th May 2018

Place: Newtown, Powys, UK

These electronic drive products are intended to be used with appropriate motors, controllers, electrical protection components and other equipment to form complete end products or systems. Compliance with safety and EMC regulations depends upon installing and configuring drives correctly, including using the specified input filters.

The drives must be installed only by professional installers who are familiar with requirements for safety and EMC. Refer to the Product Documentation. An EMC data sheet is available giving detailed information. The assembler is responsible for ensuring that the end product or system complies with all the relevant laws in the country where it is to be used.

EU Declaration of Conformity (including 2006 Machinery Directive)

Nidec Control Techniques Ltd, The Gro, Newtown, Powys, SY16 3BE. UK

This declaration is issued under the sole responsibility of the manufacturer. The object of the declaration is in conformity with the relevant Union harmonization legislation. The declaration applies to the variable speed drive products shown below:

Model No.	Interpretation	Nomenclature aaaa - bbc ddddde
aaaa	Basic series	M600, M700, M701, M702, M708, M709, M751, M753, M754, F300, H300, E200, E300, HS70, HS71, HS72, M000, RECT
bb	Frame size	01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 11
С	Voltage rating	1 = 100 V, 2 = 200 V, 4 = 400 V, 5 = 575 V, 6 = 690 V
ddddd	Current rating	Example 01000 = 100 A
е	Drive format	A = 6P Rectifier + Inverter (internal choke), D = Inverter, E = 6P Rectifier + Inverter (external choke), T = 12P Rectifier + Inverter (external choke)

The model number may be followed by additional characters that do not affect the ratings.

This declaration relates to these products when used as a safety component of a machine. Only the Safe Torque Off function may be used for a safety function of a machine. None of the other functions of the drive may be used to carry out a safety function.

These products fulfil all the relevant provisions of the Machinery Directive 2006/42/EC and the Electromagnetic Compatibility Directive (2014/30/EU). EC type examination has been carried out by the following notified body:

TUV Rheinland Industrie Service GmbH

Am Grauen Stein D-51105 Köln

Germany

Notified body identification number: 0035

The harmonized standards used are shown below: EC type-examination certificate numbers:

01/205/5270.02/17 dated 2017-08-28

EN 61800-5-1:2016	Adjustable speed electrical power drive systems - Part 5-2: Safety requirements - Functional
EN 61800-5-1:2016 (in extracts)	Adjustable speed electrical power drive systems - Part 5-1: Safety requirements - Electrical, thermal and energy
EN 61800-3: 2004+A1:2012	Adjustable speed electrical power drive systems - Part 3: EMC requirements and specific test methods
EN ISO 13849-1:2015	Safety of Machinery, Safety-related parts of control systems, General principles for design
EN 62061:2005 + AC:2010 + A1:2013 + A2:2015	Safety of machinery, Functional safety of safety related electrical, electronic and programmable electronic control systems
IEC 61508 Parts 1 - 7:2010	Functional safety of electrical/ electronic/programmable electronic safety-related systems

Person authorised to complete the technical file:

P Knight

Conformity Engineer Newtown, Powys, UK

DoC authorised by:

Jonathan Holman-White

Director of R&D

Date: 17th May 2018

Place: Newtown, Powys, UK

IMPORTANT NOTICE

These electronic drive products are intended to be used with appropriate motors, controllers, electrical protection components and other equipment to form complete end products or systems. It is the responsibility of the installer to ensure that the design of the complete machine, including its safety-related control system, is carried out in accordance with the requirements of the Machinery Directive and any other relevant legislation. The use of a safety-related drive in itself does not ensure the safety of the machine. Compliance with safety and EMC regulations depends upon installing and configuring drives correctly, including using the specified input filters. The drive must be installed only by professional installers who are familiar with requirements for safety and EMC. The assembler is responsible for ensuring that the end product or system complies with all relevant laws in the country where it is to be used. For more information regarding Safe Torque Off, refer to the Product Documentation.

Safety information Product System Mechanical Electrical Getting Technical UL Component Introduction Optimization **Parameters** Diagnostics Information Installation Installation started Information design data sizing

1 Safety information

1.1 Warnings, Cautions and Notes

A Warning contains information which is essential for avoiding a safety hazard.

A Caution contains information which is necessary for avoiding a risk of damage to the product or other equipment.

NOTE

A Note contains information which helps to ensure correct operation of the product.

1.2 Important safety information. Hazards. Competence of designers and installers

This guide applies to products which control electric motors either directly (drives) or indirectly (controllers, option modules and other auxiliary equipment and accessories). In all cases the hazards associated with powerful electrical drives are present, and all safety information relating to drives and associated equipment must be observed.

Specific warnings are given at the relevant places in this guide.

Drives and controllers are intended as components for professional incorporation into complete systems. If installed incorrectly they may present a safety hazard. The drive uses high voltages and currents, carries a high level of stored electrical energy, and is used to control equipment which can cause injury. Close attention is required to the electrical installation and the system design to avoid hazards either in normal operation or in the event of equipment malfunction. System design, installation, commissioning/start-up and maintenance must be carried out by personnel who have the necessary training and competence. They must read this safety information and this guide carefully.

1.3 Responsibility

It is the responsibility of the installer to ensure that the equipment is installed correctly with regard to all instructions given in this guide. They must give due consideration to the safety of the complete system, so as to avoid the risk of injury both in normal operation and in the event of a fault or of reasonably foreseeable misuse.

The manufacturer accepts no liability for any consequences resulting from inappropriate, negligent or incorrect installation of the equipment.

1.4 Compliance with regulations

The installer is responsible for complying with all relevant regulations, such as national wiring regulations, accident prevention regulations and electromagnetic compatibility (EMC) regulations. Particular attention must be given to the cross-sectional areas of conductors, the selection of fuses or other protection, and protective ground (earth) connections.

This guide contains instructions for achieving compliance with specific EMC standards.

All machinery to be supplied within the European Union in which this product is used must comply with the following directives:

2006/42/EC Safety of machinery.

2014/30/EU: Electromagnetic Compatibility.

1.5 Electrical hazards

The voltages used in the drive can cause severe electrical shock and/or burns, and could be lethal. Extreme care is necessary at all times when working with or adjacent to the drive. Hazardous voltage may be present in any of the following locations:

- AC and DC supply cables and connections
- · Output cables and connections
- · Many internal parts of the drive, and external option units

Unless otherwise indicated, control terminals are single insulated and must not be touched.

The supply must be disconnected by an approved electrical isolation device before gaining access to the electrical connections.

The STOP and Safe Torque Off functions of the drive do not isolate dangerous voltages from the output of the drive or from any external option unit.

The drive must be installed in accordance with the instructions given in this guide. Failure to observe the instructions could result in a fire hazard.

1.6 Stored electrical charge

The drive contains capacitors that remain charged to a potentially lethal voltage after the AC supply has been disconnected. If the drive has been energized, the AC supply must be isolated at least ten minutes before work may continue.

1.7 Mechanical hazards

Careful consideration must be given to the functions of the drive or controller which might result in a hazard, either through their intended behaviour or through incorrect operation due to a fault. In any application where a malfunction of the drive or its control system could lead to or allow damage, loss or injury, a risk analysis must be carried out, and where necessary, further measures taken to reduce the risk - for example, an over-speed protection device in case of failure of the speed control, or a fail-safe mechanical brake in case of loss of motor braking.

With the sole exception of the Safe Torque Off function, none of the drive functions must be used to ensure safety of personnel, i.e. they must not be used for safety-related functions.

The Safe Torque Off function may be used in a safety-related application. The system designer is responsible for ensuring that the complete system is safe and designed correctly according to the relevant safety standards.

The design of safety-related control systems must only be done by personnel with the required training and experience. The Safe Torque Off function will only ensure the safety of a machine if it is correctly incorporated into a complete safety system. The system must be subject to a risk assessment to confirm that the residual risk of an unsafe event is at an acceptable level for the application.

1.8 Access to equipment

Access must be restricted to authorized personnel only. Safety regulations which apply at the place of use must be complied with.

1.9 Environmental limits

Instructions in this guide regarding storage, installation and use of the equipment must be complied with, including the specified environmental limits. This includes temperature, humidity, contamination, shock and vibration. Drives must not be subjected to excessive physical force.

1.10 Hazardous environments

The equipment must not be installed in a hazardous environment (i.e. a potentially explosive environment).

Safety Introd	duction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
---------------	---------	------------------------	---------------	----------------------------	----------------------------	-----------------	--------------	------------	-------------------	------------------	-------------	-------------------

1.11 Motor

The safety of the motor under variable speed conditions must be ensured

To avoid the risk of physical injury, do not exceed the maximum specified speed of the motor.

Low speeds may cause the motor to overheat because the cooling fan becomes less effective, causing a fire hazard. The motor should be installed with a protection thermistor. If necessary, an electric forced vent fan should be used.

The values of the motor parameters set in the drive affect the protection of the motor. The default values in the drive must not be relied upon. It is essential that the correct value is entered in the Motor Rated Current parameter.

1.12 Mechanical brake control

Any brake control functions are provided to allow well co-ordinated operation of an external brake with the motor drive. While both hardware and software are designed to high standards of quality and robustness, they are not intended for use as safety functions, i.e. where a fault or failure would result in a risk of injury. In any application where the incorrect operation of the brake release mechanism could result in injury, independent protection devices of proven integrity must also be incorporated.

1.13 Adjusting parameters

Some parameters have a profound effect on the operation of the drive. They must not be altered without careful consideration of the impact on the controlled system. Measures must be taken to prevent unwanted changes due to error or tampering.

1.14 Electromagnetic compatibility (EMC)

Installation instructions for a range of EMC environments are provided in this Guide. If the installation is poorly designed or other equipment does not comply with suitable standards for EMC, the product might cause or suffer from disturbance due to electromagnetic interaction with other equipment. It is the responsibility of the installer to ensure that the equipment or system into which the product is incorporated complies with the relevant EMC legislation in the place of use.

Safety Product System Mechanical Electrical Getting Technical Component Introduction Optimization Parameters Diagnostics information Information Installation Installation started Information design sizing

2 Introduction

The following Design Guide should be read in conjunction with the relevant *Unidrive M Control User Guide* and *Power Installation Guide*.

Any Unidrive M600/M700/M701 drive can be configured as an AC Regenerative Unit (hereafter referred to as a Regen drive).

It is possible to operate a Unidrive M702 in Regen Mode although it is not recommended due to the lack of control connections required to fully support Regen operation.

This Design Guide gives instructions for the drive connected to the supply. For instructions regarding the drive connected to the motor, please refer to the relevant *Unidrive M Control User Guide* and *Power Installation Guide*.

Safe Torque Off function

The drive enable input is designed to offer the Safe Torque Off safety function only when the drive is connected directly to the motor. The enable input for the drive which is connected to the AC supply works only as a simple enable input for regenerative operation. It does not prevent power from reaching the motor and it does not offer the Safe Torque Off safety function. No attempt must be made to use it for a safety function. Failure to observe this warning could result a dangerous failure of a machinery safety function. Any reference in this Design Guide to Safe Torque Off should be taken to refer only to the enable function and not to any safety function.

This guide covers the following:

- Principles and advantages of operation in Regen mode
- · Safety information
- FMC information
- · Detailed information on additional components required
- System design
- · Special considerations
- · Installation
- · Commissioning and optimization of the completed system

At least two Unidrive M drives are required to form a complete regenerative system - one connected to the supply and the second one connected to the motor. A Unidrive M in Regen mode converts the AC mains supply to a controlled DC voltage, which is then fed into another drive(s) to control a motor(s).

NOTE

The motoring drive(s) in a Regen configuration could be another drive other than a Unidrive M, e.g. Unidrive SP or Commander SK etc.

NOTE

The following Regen components are also required in addition to the Unidrive M drives.

- 1. Regen inductor
- 2. Switching frequency filter inductor
- 3. Switching frequency filter capacitor
- 4. Softstart resistor
- 5. Varistors
- 6. MCBs
- 7. Overload relays

2.1 Regen operation

For use as a regenerative front end for four quadrant operation.

Regen operation allows bi-directional power flow to and from the AC supply. This provides far greater efficiency levels in applications which would otherwise dissipate large amounts of energy in the form of heat in a braking resistor.

The low frequency harmonic content of the input current is negligible due to the sinusoidal nature of the waveform when compared to a conventional bridge rectifier or thyristor front end.

2.2 Advantages of Unidrive M operating in Regen mode

The main advantages of an AC Regen system are:

- · Energy saving.
- The input current waveform is sinusoidal.
- The input current has a near unity power factor.
- · Harmonic reduction feature.
- The output voltage for the motor can be higher than the available AC mains supply.
- · Possible to control reactive current or power (kVAr units).
- The Regen drive will synchronize to any frequency between 10 and 200 Hz, provided the supply voltage is within the supply requirements (operating frequency range of 45 Hz to 66 Hz) refer to section 6.2 Supply requirements on page 117.
- It is possible to configure the drive to continue operating for short periods of time during supply dips and faults i.e. ride through.
- Island detection feature to prevent unwanted islanded operation, where part of the power distribution network becomes separated from the power grid and is unintentionally maintained by an inverter.
- The Regen and motoring drives are identical (when using *Unidrive M*).
- Power feed-forward term available, using analog I/O set-up or fast synchronous communications.
- A fast transient response is possible using the power feed forward term
- · Voltage and frequency limits configurable.

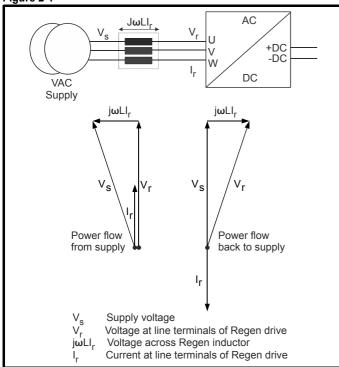
2.3 Principles of operation

The input stage of a non-regenerative AC drive is usually an uncontrolled diode rectifier, therefore power cannot be fed back onto the AC mains supply. By replacing the diode input rectifier with a voltage source PWM input converter (Unidrive M), AC supply power flow can be bi-directional with full control over the input current waveform and power factor. Currents can now be controlled to give near unity power factor and a low level of line frequency harmonics.

In the case of a *Unidrive M* operating in regenerative mode, the IGBT stage is used as a sinusoidal rectifier converting the AC supply to a controlled DC voltage.

Furthermore, by maintaining the DC bus voltage above the peak supply voltage the load motor can be operated at a higher speed without field weakening. Alternatively, the higher output voltage available can be exploited by using a motor with a rated voltage higher than the AC mains supply, thus reducing the current for a given power.

The difference between the PWM line voltage and the supply voltage occurs across the Regen inductors at the Regen drive. This voltage has a high frequency component, which is blocked by the Regen inductor, and a sinusoidal component at line frequency. As a result currents flowing in these inductors are sinusoidal with a small high frequency ripple component.


Regen inductors must be used to ensure a minimum source impedance, these being selected and specified later in the guide.

Safety Product System Mechanical Electrical Getting Technical UL Component Introduction Optimization Parameters Diagnostics information Information design Installation Installation started Information data sizing

2.4 Power flow

The following phasor diagram illustrates the relationship between the supply voltage and the Regen drive voltage. The angle between the two voltage vectors is approximately 5° at full load, this can result in a near unity power factor of 0.996, depending on the grid supply conditions.

Figure 2-1

The direction of the power flow can be changed relative to the supply voltage, by making small changes to the Regen drives output voltage and phase.

2.5 Synchronization

The synchronization of the Regen drive to the supply does not require additional hardware. The space vector modulator within the Regen drive represents the angle and magnitude of the AC supply at all times. This however is not the case when the AC supply is first connected or when the Regen drive is disabled.

Unless some form of synchronization is carried out the current controllers will start with values of zero resulting in zero volts being applied to the inverter output terminals. The phase locked loop (PLL) would also start with zero and so would not lock onto the supply.

To overcome these problems the following information must be obtained before the Regen drive attempts to start:

- 1. The mains supply voltage vector magnitude
- 2. The angle of the supply voltage vector
- 3. The frequency of the supply

These values are obtained by carrying out a synchronization on enable

- The first stage of the pre-start tests is to measure the initial DC bus voltage, which by default, is assumed to be equal to the peak line-toline voltage of the supply.
- The second stage of the pre-start test is to apply two short pulses of zero volts at the converter input. These pulses must be short enough so that the peak current is less than the over current trip level of the converter. The time between the pulses must also be long enough so that the current built up in the input inductors during the first pulse has decayed to a low level before the second pulse is applied. These are used to calculate the instantaneous angle of the supply voltage vector during the first test pulse. The second test pulse is then applied at time Td later to allow the supply frequency to be calculated.

At this stage the supply inductance is also calculated.

- Once the synchronization is complete the phase locked loop (PLL) is set-up. At this point the whole control system could be started and should operate without any large transients.
- To improve the robustness of the start-up phase a further short test pulse voltage vector, with the same magnitude and phase as the estimated supply voltage vector is applied. This is to detect measurement errors that could have occurred because of supply distortion present during the pre-start tests. The Regen drive may not synchronize to the supply if the grid voltage is highly distorted.

2.6 Current trimming

A current feedback trimming routine runs before the drive is enabled to minimise offsets in the current feedback. This feature can be user configured, for more details refer to section 8.6 *Current trimming* on page 144.

2.7 Regen system configurations

The Regen drive has been designed to provide a regulated DC supply to other motoring drives. The Regen drive gives bi-directional power flow with sinusoidal currents and a near unity power factor.

Following are the possible configurations for Unidrive M Regen:

- Single Regen, single motoring (Figure 4-4 on page 42).
- Single Regen, multiple motoring using a Unidrive M Rectifier (Figure 4-5 on page 44).
- Single Regen, multiple motoring using an external softstart resistor (Figure 4-6 on page 46).
- Multiple Regen, multiple motoring using a Unidrive M Rectifier (Figure 4-7 on page 48).
- Regen drive as brake resistor replacement (Figure 4-8 on page 52).

Refer to section 3.3 *Ratings* on page 17, for the Regen drive ratings.

The sizing of a Regen system must take into account the following factors:

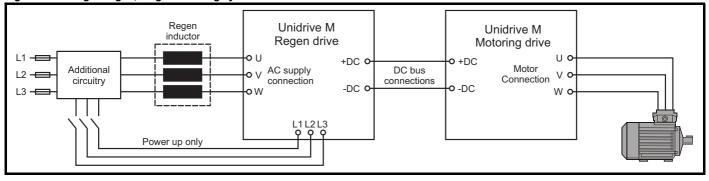
- · Line voltage
- Motor rated current, rated voltage and power factor
- · Maximum load power and overload conditions

In general, when designing a Regen system, equal Regen and motoring drive rated currents will work correctly. However, care must be taken to ensure that under worst case supply conditions the Regen drive is able to supply or absorb all the required power. In multi-drive configurations, the Regen drive must be of a sufficient size to supply the net peak power demanded by the combined load of all the motoring drives and total system losses.

If the Regen drive is unable to supply the full power required by the motoring drive, the DC bus voltage will drop and in severe cases may lose synchronization with the mains and trip. If the Regen drive is unable to regenerate the full power from the motoring drive on the DC bus, then the Regen and motoring drive(s) will trip on over-voltage.

2.8 Regen drive system types

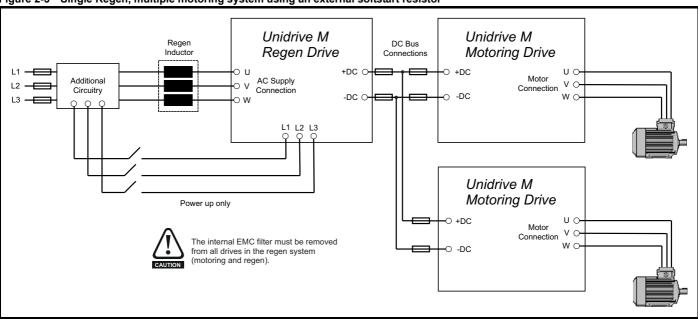
2.8.1 Single Regen, single motoring system


Figure 2-2 shows a typical layout for a standard Regen system consisting of a single Regen drive and single motoring drive. In this configuration the Regen drive is supplying the motoring drive and passing the regenerative energy back to the mains supply.

NOTE

The power up connections to L1, L2, L3 of the Regen drive are only made during power-up. Once both drives are powered up, this is switched out and the main Regen supply switched in. The auxiliary on the charging circuit to the Regen drive's L1, L2, L3 connections for power up must be closed (charging supply removed) before the Regen drive can be enabled.

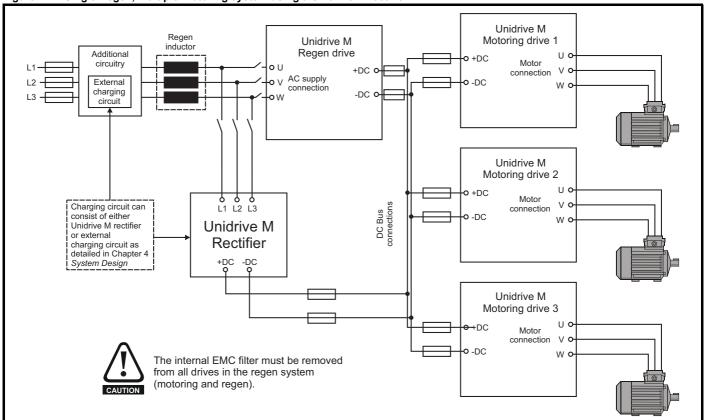
Figure 2-2 Single Regen, single motoring system


NOTE

For the above single Regen, single motoring configuration; the Regen drive must be of the same frame size or larger.

2.8.2 Single Regen, multiple motoring system

Figure 2-3 and Figure 2-4 show the layout for a Regen system consisting of a single Regen drive with multiple motoring drives. In this configuration the Regen drive is sized to the total power of all motoring drives.


Figure 2-3 Single Regen, multiple motoring system using an external softstart resistor

It is also possible to have a single Regen drive powering multiple motoring drives as shown with the power up connections also being provided via the Regen drives L1, L2, L3 inputs and using the Regen drives own internal softstart.

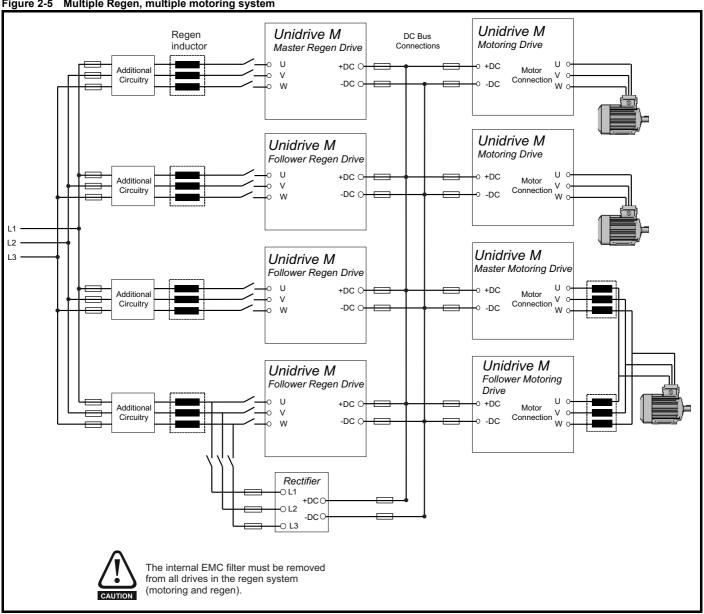
Figure 2-4 Single Regen, multiple motoring system using a Unidrive M rectifier

NOTE

For a single Regen and multiple motoring drive arrangement optional charging circuits can be used for the increased inrush current generated by the additional capacitance of the multiple motoring drives. The charging circuit can consist of either a Unidrive M rectifier module or an external softstart resistor as detailed in Chapter 4 *System design* on page 40.

Safety information	Introduction Produ Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information	۱
--------------------	-----------------------------------	---------------	----------------------------	----------------------------	--------------------	--------------	------------	----------------	------------------	-------------	-------------------	---

2.8.3 Multiple Regen, multiple motoring system

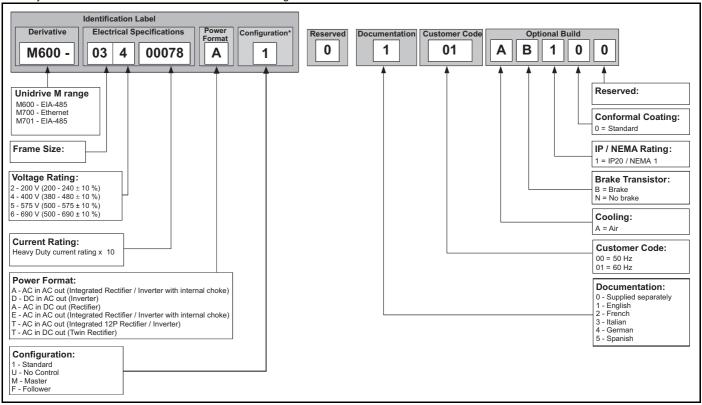

Figure 2-5 shows a multiple Regen drive system with multiple motoring drives. For this configuration the Regen drives are sized to the total power requirement of all motoring drives. The multiple Regen configuration is only possible with Unidrive M modular drives in master / follower configuration.

NOTE

For the multiple Regen and multiple motoring drives arrangement the required start-up circuit consists of a Unidrive M rectifier module (for example a 10404520 is capable of charging a maximum DC Bus capacitance of 70.2 mF).

Special care should be taken when designing a multiple Regen and multiple motoring drive system ensuring that all the required fusing is in place on both the common DC bus connections and the AC supply to all Regen drives.

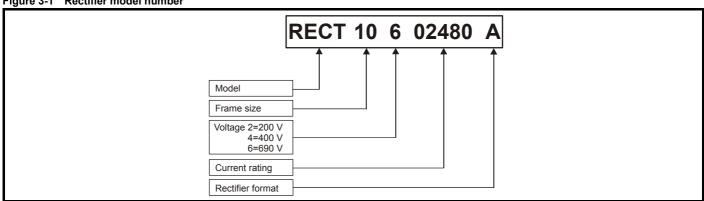
Figure 2-5 Multiple Regen, multiple motoring system


All drives paralleled must be of the same frame size, and a derating also applies in Chapter 3, section 3.3 Ratings on page 17.

Safety	Introduction	Product	System	Mechanical	Electrical	Getting	Optimization	Parameters	Technical	Component	Diagnostics	UL
information	Introduction	Information	design	Installation	Installation	started	Optimization	Farameters	data	sizing	Diagnostics	Information

3 **Product Information**

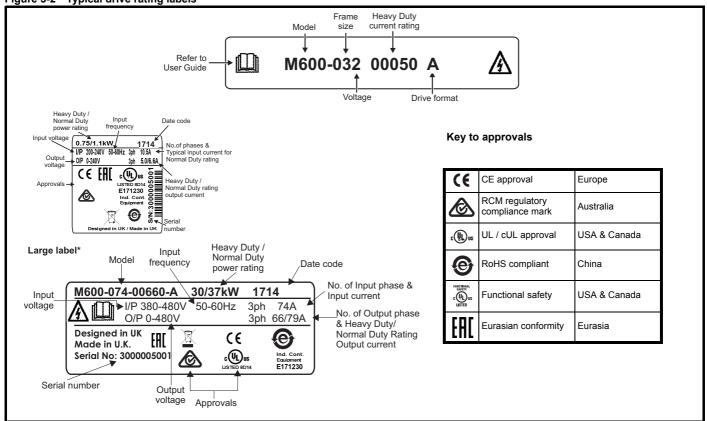
3.1 Model number


The way in which the model numbers for the Unidrive M range are formed is illustrated below.

NOTE

The internal EMC filter and negative DC terminal are not accessible on Unidrive M frames 9E/T, 10E/T and 11E/T. These power formats are therefore not suitable for Regen systems.

Figure 3-1 Rectifier model number



Safety information	Introduction Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information	ı
--------------------	----------------------------------	---------------	----------------------------	----------------------------	--------------------	--------------	------------	----------------	------------------	-------------	-------------------	---

3.2 Nameplate description

See Figure 3-3 on page 20 for location of rating labels.

Figure 3-2 Typical drive rating labels

NOTE

Date code format

The date code is four numbers. The first two numbers indicate the year and the remaining numbers indicate the week of the year in which the drive was built.

Example: A date code of 1710 would correspond to week 10 of year 2017.

Safety	Introduction	Product	System	Mechanical Installation	Electrical	Getting	Optimization	Parameters	Technical	Component	Diagnostics	UL
information		Information	design	mstallation	Installation	started	•		data	sizing	·	Information

3.3 Ratings

The continuous current ratings given are for maximum 40 °C (104 °F), 1000 m altitude and 3 kHz switching frequency. Output current derating has been applied based on Regen and switching frequency filter inductor capability. Additional derating is required for higher switching frequencies, ambient temperature >40 °C (104 °F) and high altitude. For further information, refer to Chapter 10 *Technical data* on page 276.

Table 3-1 200 V drive ratings (200 V to 240 V ±10 %)

		Norma	al Duty			Heavy	/ Duty	
Model	Max cont current	Nominal power at 230 V	Motor power at 230 V	Peak current	Max cont current	Peak current	Nominal power at 230 V	Motor power at 230 V
	Α	kW	hp	Α	Α	Α	kW	hp
03200066	8	1.5	2	8.8	6.6	13.2	1.1	1.5
03200080	11	2.2	3	12.1	8	16	1.5	2
03200106	11	3	3	13.9	10.6	19.2	2.2	3
04200137	15.5	4	5	19.8	13.7	27.1	3	3
04200185	22	5.5	7.5	27.5	15.5	27.1	4	5
05200250	30	7.5	10	33	22	38.5	5.5	7.5
06200330	50	11	15	55	31	54.2	7.5	10
06200440	56	15	20	63.8	42	73.5	11	15
07200610	75	18.5	25	82.5	56	98	15	20
07200750	94	22	30	103.4	75	140	18.5	25
07200830	105	30	40	128.7	80	140	22	30
08201160	149	37	50	163.9	105	183.7	30	40
08201320	180	45	60	198	132	264	37	50
09201760*	192	55	75	237.6	176	308	45	60
09202190*	250	75	100	292.6	192	336	55	75
10202830*	312	90	125	357.5	283	495.3	75	100
10203000*	350	110	150	396	300	525	90	125

^{*} The internal EMC filter and negative DC terminal are not accessible on Unidrive M Frames 9E/T, 10E/T and 11E/T. These power formats are therefore not suitable for Regen systems. Select 9A/D or 10D power formats only.

											ì	
Safety	Indus divisities	Product	System	Mechanical	Electrical	Getting	Ontimization	D	Technical	Component	D:	UL
information	Introduction	Information	design	Installation	Installation	started	Optimization	Parameters	data	sizing	Diagnostics	Information

Table 3-2 400 V drive ratings (380 V to 480 V ±10 %)

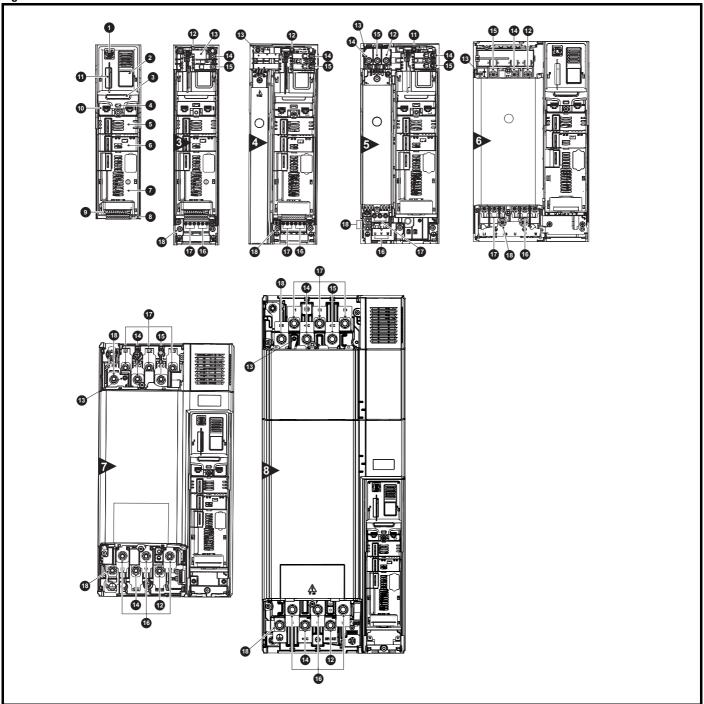
		Norma	al Duty			Heavy	Duty	
Model	Max cont current	Nominal power at 400 V	Motor power at 460 V	Peak current	Max cont current	Peak current	Nominal power at 400 V	Motor power at 460 V
	Α	kW	hp	Α	Α	Α	kW	hp
03400078	9.5	4	5.0	11.4	7.8	15.6	3	5
03400100	12	5.5	7.5	13.5	9.5	16.6	4	5
04400150	16	7.5	10	20.3	15	28	5.5	10
04400172	24	11	15	26.4	16	28	7.5	10
05400270	30	15	20	33	25	43.7	11	20
05400300	31	15	20	34.1	30	60	15	20
06400350	38	18.5	25	41.8	34	60	15	25
06400420	46	22	30	52.8	40	70	18.5	30
06400470	60	30	40	69.3	46	80.5	22	30
07400660	70	37	60	86.9	66	122.5	30	50
07400770	94	45	60	103.4	70	122.5	37	60
07401000	112	55	75	123.2	96	168	45	75
08401340	155	75	100	170.5	124	217	55	100
08401570	180	90	150	202.4	156	273	75	125
09402000*	200	110	150	243.1	180	315	90	150
09402240*	255	132	200	280.5	200	353.5	110	150
10402700*	300	160	250	352	270	472.5	132	200
10403200*	350	200	300	397.1	300	525	160	250
11403770*	437	225	350	481	377	660	185	300
11404170*	460	250	400	506	415	726.2	200	350
11404640*	460	280	450	506	415	726.2	250	400

^{*} The internal EMC filter and negative DC terminal are not accessible on Unidrive M Frames 9E/T, 10E/T and 11E/T. These power formats are therefore not suitable for Regen systems. Select 9A/D, 10D or 11D power formats only.

- 1													
	Safety	Introduction	Product	System	Mechanical	Electrical	Getting	Optimization	Parameters	Technical	Component	Diagnostics	UL
	information	miloduction	Information	design	Installation	Installation	started	Optimization	Faiailleteis	data	sizing	Diagnostics	Information

Table 3-3 575 V Drive ratings (500 V to 575 V \pm 10 %)

		Norma	al Duty			Heavy	Duty	
Model	Max cont current	Nominal power at 575 V	Motor power at 575 V	Peak current	Max cont current	Peak current	Nominal power at 575 V	Motor power at 575 V
	Α	kW	hp	Α	Α	Α	kW	hp
06500150	17	11	15	18.7	15	30	7.5	10
06500190	22	15	20	24.2	19	33.2	11	15
06500230	27	18.5	25	29.7	22	38.5	15	20
06500290	34	22	30	37.4	27	47.2	18.5	25
06500350	43	30	40	47.3	34	63	22	30
07500440	52	45	50	58.3	43	75.2	30	40
07500550	63	55	60	80.3	52	91	37	50
08500630	85	75	75	94.6	63	110.2	45	60
08500860	100	90	100	118.8	85	148.7	55	75
09501040*	125	110	125	137.5	100	175	75	100
09501310*	144	110	150	165	125	218.7	90	125
10501520*	192	130	200	220	144	252	110	150
10501900*	192	150	200	220	190	332.5	132	200
11502000*	248	185	250	273	200	350	150	200
11502540*	265	225	300	291.5	221	386.7	185	250
11502850*	265	250	350	291.5	221	386.7	225	300

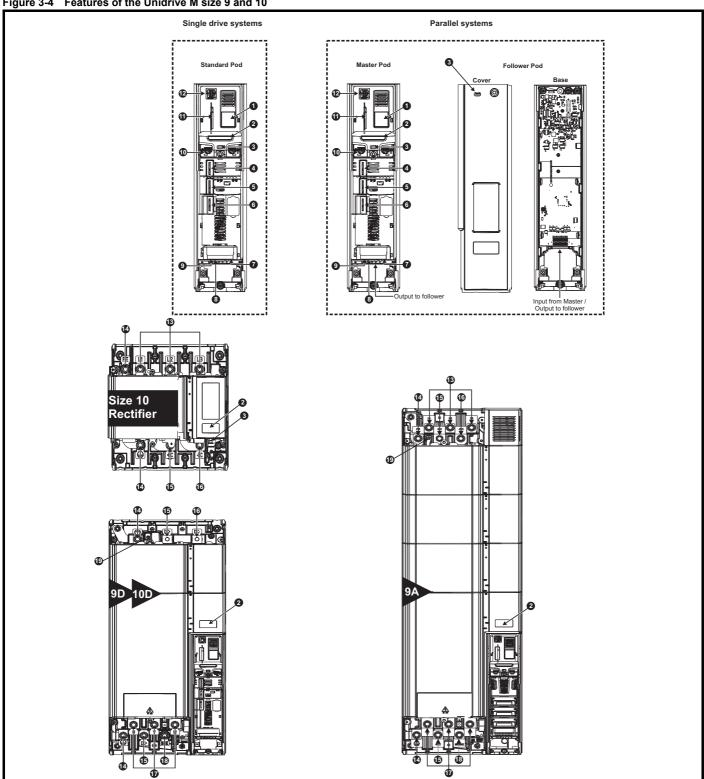

		Norma	al Duty			Heavy	/ Duty	
Model	Max cont current	Nominal power at 690 V	Motor power at 690 V	Peak current	Max cont current	Peak current	Nominal power at 690 V	Motor power at 690 V
	Α	kW	hp	Α	Α	Α	kW	hp
07600190	22	18.5	25	25.3	19	33.2	15	20
07600240	27	22	30	33	22	38.5	18.5	25
07600290	36	30	40	39.6	27	47.2	22	30
07600380	43	37	50	50.6	36	63	30	40
07600440	52	45	60	57.2	43	75.2	37	50
07600540	63	55	75	80.3	52	91	45	60
08600630	85	75	100	94.6	63	110.2	55	75
08600860	100	90	125	118.8	85	148.7	75	100
09601040*	125	110	150	137.5	100	175	90	125
09601310*	144	132	175	170.5	125	218.7	110	150
10601500*	168	160	200	189.2	144	252	132	175
10601780*	192	185	250	216.7	168	294	160	200
11602100*	225	200	250	247	210	367	185	250
11602380*	265	250	300	291.5	221	386.7	200	250
11602630*	265	280	400	291.5	221	386.7	250	300

^{*} The internal EMC filter and negative DC terminal are not accessible on Unidrive M Frames 9E/T, 10E/T and 11E/T. These power formats are therefore not suitable for Regen systems. Select 9A/D, 10D or 11D power formats only.

	1						ì				i	
Safety		Product	System	Mechanical	Electrical	Getting			Technical	Component		UL
	Introduction			Landa Hallanda	Landa Hardan		Optimization	Parameters	d.t.		Diagnostics	
information		Information	design	Installation	Installation	started			data	sizing	. 5	Information

3.4 Drive features

Figure 3-3 Features of the drive sizes 3 to 8

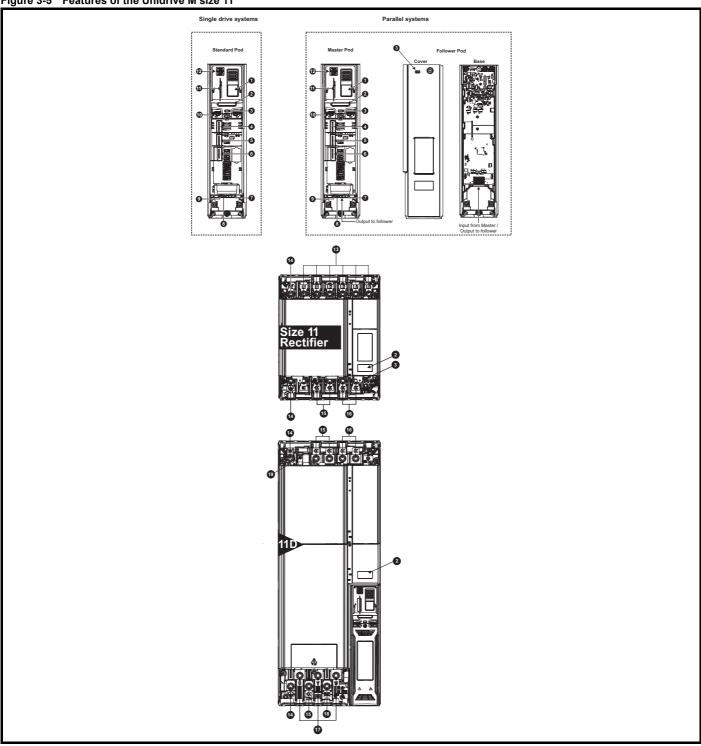


Key

- 1. Keypad connection
- 2. Rating label
- 3. Identification label
- 4. Status LED
- 5. Option module slot 1
- 6. Option module slot 2
- 7. Option module slot 3
- 8. Relay connections
- 9. Control connections
- 10. Communications port
- 11. NV media card slot
- 12. Braking terminal
- 13. Internal EMC filter (must be removed)
- 14. DC bus output +
- 15. DC bus output -

- 16. AC supply connections (U, V, W)
- 17. Charging inputs (L1, L2, L3)
- 18. Ground connections

Figure 3-4 Features of the Unidrive M size 9 and 10



Key

- Rating label
- 2. Identification label
- 3. Status LED
- Option module slot 1
- 5. Option module slot 2
- 6. Option module slot 3
- 7. Relay connections
- 8. Position feedback connections
- 9. Control connections
- 10. Communications port
- 11. NV media card slot
- 12. Keypad connection
- 13. Charging input (L1, L2, L3)
- 14. Ground connections
- 15. DC bus output +
- 16. DC bus output -
- 17. AC supply connections (U, V, W)
- 18. Braking terminal
- 19. Internal EMC filter (must be removed)

Getting started Safety Product Information System Mechanical Electrical Technical Component UL Introduction Optimization Parameters Diagnostics sizing information design Installation Installation data Information

Figure 3-5 Features of the Unidrive M size 11

The rectifier and Unidrive 11D are fitted with dual input power terminals (2 x L1, L2, L3 on the rectifier and 2 x +DC, -DC on the inverter). Ensure that cables to both of the terminals are installed.

- Key 1. Rating label 6. Option module slot 3 11. NV media card slot Identification label 2. 7. Relay connections
- 3. Status LED 8. Position feedback connections 4. Option module slot 1 9. Control connections
 - Option module slot 2 10. Communications port
- 12. Keypad connection
- 13. Charging input (L1, L2, L3)
- 14. Ground connections 15. DC bus output +
- 16. DC bus output -
- 17. AC supply connections (U, V, W)
- 18. Braking terminal
- 19. Internal EMC filter (must be removed)

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
--------------------	--------------	---------------------	---------------	----------------------------	----------------------------	--------------------	--------------	------------	-------------------	------------------	-------------	-------------------

3.5 Unidrive M Rectifier

The Unidrive M Rectifier is a half controlled SCR/thyristor bridge.

Figure 3-6 Frame 10 single half controlled SCR/thyristor

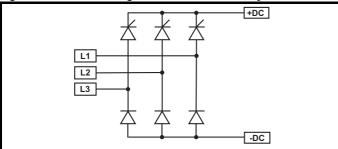
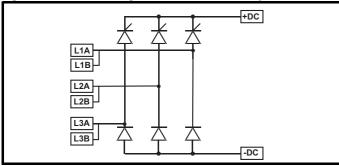
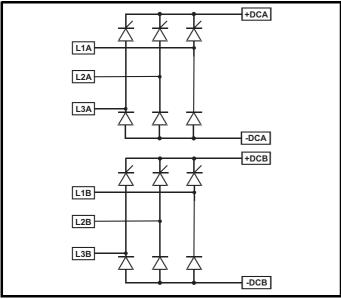
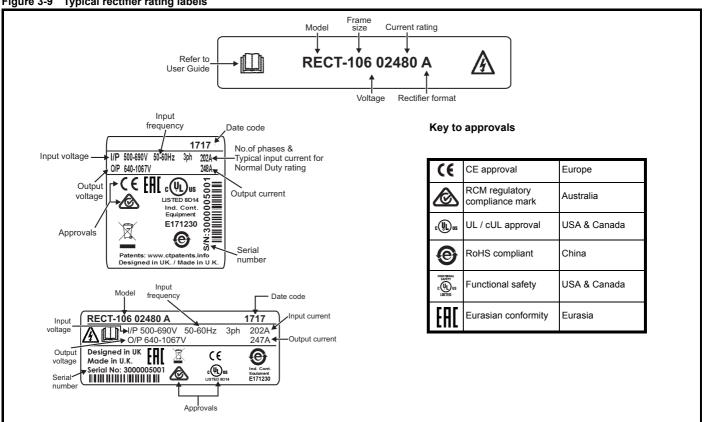


Figure 3-7 Frame 11 single half controlled SCR/thyristor


Figure 3-8 Frame 11 twin half controlled SCR/thyristor

The Unidrive M rectifier is a half controlled SCR/thyristor bridge. The rectifier cannot be used as a stand alone rectifier to supply several smaller drives, but can be used to soft-start or pre-charge single or multiple inverters connected via a common DC bus.

Figure 3-9 Typical rectifier rating labels

3.6 Unidrive M Rectifier technical data

Table 3-5 Rectifier ratings at 40 °C (104 °F)

Model	Voltage rating	Typical input current	Maximum continuous input current	Maximum overload input current	Typical continuous DC output current	Maximum DC output current
	V	Α	Α	Α	Α	Α
10204100	200	333	361	494	409	413
10404520	400	370	396	523	452	455
10502430	575	202	218	313	243	246
10602480	690	202	225	313	247	251
11406840	400	557	594	752	684	689
11503840	575	313	338	473	384	387
11604060	690	331	362	465	406	411
1142X400*	400	2 x 326	2 x 358	2 x 397	2 x 395	2 x 400
1162X380*	690	2 x 308	2 x 339	2 x 375	2 x 375	2 x 380

^{*} Twin rectifier

The fuse and cable data in Table 3-5 are based on continuous operation of the Unidrive M rectifier. When using a Unidrive M rectifier to soft start a regen system the charging currents for the system should be calculated.

Safety		Product	System	Mechanical	Electrical	Getting			Technical	Component		UL
information	Introduction	Information	design	Installation	Installation	started	Optimization	Parameters	data	sizing	Diagnostics	Information

Table 3-6 Unidrive M rectifier current and fuse ratings

	Typical	Maximum continuous	Maximum overload	Fuse rating									
Model	input current	input current	input		IEC			UL/USA					
			current	Nominal	Maximum	Class	Nominal	Maximum	Class				
	Α	Α	Α	Α	Α	Class	Α	Α	Class				
10204100	333	361	494	450	450		450	450					
10404520	370	396	523	450	450	aD.	450	450	HSJ				
10502430	202	218	313	250	250	gR	250	250	ПОЈ				
10602480	202	225	313	250	250		250	250					
11406840	557	594	752	630	630		600	600					
11503840	313	338	473	400	400		400	400					
11604060	331	362	465	400	400	gR	400	400	HSJ				
1142X400*	2 x 326	2 x 358	2 x 516	400	400		400	400					
1162X380*	2 x 308	2 x 339	2 x 488	400	400		400	400					

Table 3-7 Unidrive M rectifier cable ratings

			Cable s	ize (IEC)				Cable si	ze (UL)	
			m	m ²				AWG o	r kcmil	
Model		Input			Output		Inj	out	Ou	tput
	Nominal	Maximum	Installation method	Nominal	Maximum	Installation method	Nominal	Maximum	Nominal	Maximum
10204100	2 x 150	2 x 185	С	2 x 120	2 x 150	С	2 x 300	2 x 500	2 x 400	2 x 500
10404520	2 x 150	2 x 185	С	2 x 150	2 x 150	С	2 x 350	2 x 500	2 x 500	2 x 500
10502430	2 x 95	2 x 185	B2	2 x 95	2 x 150	B2	2 x 3/0	2 x 500	2 x 3/0	2 x 500
10602480	2 x 95	2 x 185	B2	2 x 95	2 x 150	B2	2 x 3/0	2 x 500	2 x 3/0	2 x 500
11406840	4 x 120	4 x 120	С	4 x 150	4 x 150	С	2 x 250	2 x 250	2 x 300	2 x 300
11503840	2 x 120	2 x 120	С	2 x 120	2 x 120	С		2 x 2	250	
11604060	2 x 120	2 x 120	С	2 x 120	2 x 120	С	2 x 300			
1142X400*	2 x 2 x120	2 x 2 x120	С	2 x 2 x 120	2 x 2 x 120	С	2 x 2 x 300			
1162X380*	2 x 2 x120	2 x 2 x120	С	2 x 2 x 120	2 x 2 x 120	С	2 x 2 x 300			

^{*} Twin rectifier

The user must provide a means of preventing live parts from being touched. A cover around the electrical connections at the top of the inverter and the bottom of the rectifier where the cables enter is required.

Input fuses as specified must be installed.

Table 3-8 Key to Unidrive M rectifier LED

Status Output	Definition
LED	Definition
ON	Mains loss
Flashing	Temp Feedback trip
OFF	System healthy

The half controlled thyristor rectifier can be used as an external charging module for a Regen system consisting of multiple drives. The required soft-start function is built into the *Unidrive M* rectifier module as standard.

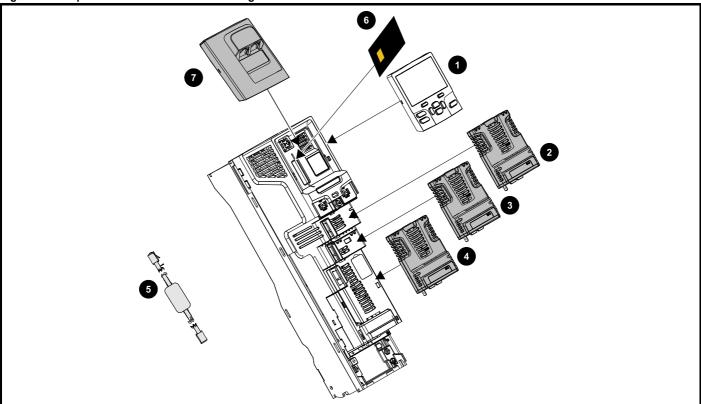
Safety	Introduction	Product	System	Mechanical	Electrical	Getting	Optimization	Parameters	Technical	Component	Diagnostics	UL
information	introduction	Information	design	Installation	Installation	started	Optimization	1 didilicicis	data	sizing	Diagnostics	Information

Table 3-9 Unidrive M external rectifier maximum DC bus capacitance charging capability

Model	AC line current (100 % Normal Duty Motor Current)	DC bus current (100 % Normal Duty Motor Current)	Maximum DC bus capacitance (mF)
10204100	333 A	409 A	109.2
10404520	370 A	452 A	70.2
10502430	202 A	243 A	31.2
10602480	202 A	247 A	31.2
11406840	557 A	684 A	93.6
11503840	313 A	384 A	41.6
11604060	331 A	406 A	41.6
1142X400*	2 x 326 A	2 x 395 A	2 x 93.6
1162X380*	2 x 308 A	2 x 375 A	2 x 41.6

^{*} Twin rectifier

Table 3-10 Maximum DC bus capacitance charging capability for Unidrive M Frame 7 to 9A


Model	Maximum DC bus capacitance (mF)
07200610	47
07200750	47
07200830	47
07400660	23
07400770	23
07401000	23
07500440	8
07500550	8
07600190	8
07600240	8
07600290	8
07600380	8
07600440	8
07600540	8
08201160	70
08201320	70
08401340	35
08401570	35
08500630	13
08500860	13
08600630	13
08600860	13
09201760A	109
09202190A	109
09402000A	55
09402240A	55
09501040A	31
09501310A	31
09601040A	31
09601310A	31

Also refer to the relevant *Unidrive M / Unidrive HS Modular Installation Guide* for further detailed information on the *Unidrive M* rectifier mechanical and electrical installation.

Safety	Introduction	Product	System	Mechanical	Electrical	Getting	Optimization	Parameters	Technical	Component	Diagnostics	UL
information	Introduction	Information	design	Installation	Installation	started	Optimization	Farameters	data	sizing	Diagnostics	Information

3.7 Options

Figure 3-10 Options available for Unidrive M Regen

- 1. Keypad
- 2. Option module slot 1
- 3. Option module slot 2
- 4. Option module slot 3
- 5. USB Comms cable
- 6. NV media card
- 7. KI-485 comms adaptor

Be aware of possible live terminals when inserting or removing the NV media card.

NOTE

Position feedback option modules will still function with a drive configured in Regen mode, however, this would only be required where the Regen drive is to be used to provide additional option Module slots for the motoring drive.

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
--------------------	--------------	---------------------	---------------	----------------------------	----------------------------	-----------------	--------------	------------	----------------	------------------	-------------	-------------------

All standard option modules are color-coded in order to make identification easy. All modules have an identification label on top of the module. Standard option modules can be installed to any of the available option slots on the drive. The following tables shows the color-code key and gives further details on their function.

Table 3-11 Option module identification

Туре	Option module	Color	Name	Further Details
		N/A	KI-485 Adaptor	EIA-485 Comms Adaptor EIA-485 Comms adaptor provides EIA-485 communication interface. This adaptor supports 115 k Baud, node addresses between 1 to 16 and 8 1 NP M serial mode.
		Purple	SI-PROFIBUS	PROFIBUS option PROFIBUS adapter for communications with the drive
		Medium Grey	SI-DeviceNet	DeviceNet option DeviceNet adapter for communications with the drive
Fieldbus		Light Grey	SI-CANopen	CANopen option CANopen adapter for communications with the drive
		Beige	SI-Ethernet	External Ethernet module that supports EtherNet/IP, Modbus TCP/IP and RTMoE. The module can be used to provide high speed drive access, global connectivity and integration with IT network technologies, such as wireless networking
		Yellow Green	SI-PROFINET V2	PROFINET V2 option PROFINET V2 adapter for communications with the drive Note: PROFINET V2 replaces PROFINET RT.
		Brown Red	SI-EtherCAT	EtherCAT option EtherCAT adapter for communications with the drive
Automation (I/O expansion)	manualin	Orange	SI-I/O	Extended I/O Increases the I/O capability by adding the following combinations: Digital I/O Digital Inputs Analog Inputs (differential or single ended) Analog Output Relays
		Moss Green	MCi200	Machine Control Studio Compatible Applications Processor 2nd processor for running pre-defined and/or customer created application software.
Automation (Applications)		Moss Green	MCi210	Machine Control Studio Compatible Applications Processor (with Ethernet communications) 2nd processor for running pre-defined and/or customer created application software with Ethernet communications.
		Black	SI-Applications Plus	SyPTPro Compatible Applications Processor (with CTNet) 2nd processor for running pre-defined and/or customer created application software with CTNet support (can only be used on Slot 3).

NOTE

Position feedback modules will still function with a drive configured in Regen mode, however, this would only be required where the Regen drive is to be used to provide additional System Integration Module slots for the motoring drive.

Safety		Product	System	Mechanical	Electrical	Getting			Tochnical	Component		UL
information	Introduction	Product Information	System design	Installation	Installation	started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	Information

Table 3-12 Keypad identification

Type	Keypad	Name	Further Details
		KI-Keypad	Keypad with an LCD display
Keypad		KI-Keypad RTC	Keypad with an LCD display and real time clock
		Remote-Keypad RTC	Remote Keypad with an LCD display and real time clock

Table 3-13 Additional options

Type	Option	Name	Further Details
Back-up		SD Card Adaptor	Allows the drive to use an SD card for drive back-up
Баск-ир	Nickey: MECHO Interprets	SMARTCARD	Used for parameter back-up with the drive

3.8 Items supplied with the drive

The drive is supplied with a copy of the *Power Installation Guide* and a copy of the *Control Getting Started Guide*, a safety information booklet and an accessory kit box (see the relevant *Power Installation Guide* for details).

3.9 Regen components

NOTE

The Regen filter components listed in this manual are the best match between the currently available filters and the Unidrive M ratings. In some cases it is necessary to reduce Pr **05.007** (Rated Current) to avoid exceeding the filter current rating.

3.9.1 Regen inductor

The following Regen inductors are special parts being designed for very high levels of harmonic voltage and having a high saturation current with good linearity below saturation. Under no circumstances must a part be used other than those listed.

The Regen inductor supports the difference between the PWM voltage from the Unidrive M Regen drive and sinusoidal voltage from the supply.

3.9.2 Switching frequency filter inductor

The inductors are standard three phase inductors. They carry only 50/60 Hz current with a negligible amount of high frequency current. The switching frequency filter inductors are calculated at 4 % of the Regen drives rating using the following formula. A tolerance can be applied to the calculated value in the range of, -10 % to +30 %.

L switching frequency filter mH = VLL / $\sqrt{3}$ x 1 / Irated x 0.04 x 1 / (2 x pi x f). Where:

VLL = Supply voltage line-to-line

f = Supply frequency

Irated = Drive rated current (normal or heavy duty)

NOTE

SFF inductors should be wound with copper windings and a current density of no more than 2.5 Arms / mm².

NOTE

This calculation also gives the correct inductance value for a 480 V, 60 Hz supply.

When specifying a Switching Frequency Filter Inductor, ensure that it is fitted with thermal protection to disable the system in the event of a thermal overload.

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
--------------------	--------------	---------------------	---------------	----------------------------	----------------------------	--------------------	--------------	------------	----------------	------------------	-------------	-------------------

3.9.3 Switching frequency filter capacitor

The switching frequency filter capacitors are special parts which are used for filtering of the Regen drives PWM and only the recommended parts should be used.

The 3-phase switching frequency filter (SFF) capacitors are situated on the input of the Regen system. If the harmonic distortion of the supply is high for extended periods then this can cause a reduction of the service life of the capacitors. The effect of this is to reduce the capacitance value. If high levels of harmonic distortion are expected then it is recommended that the capacitance values be checked periodically, and capacitors which have fallen outside of their tolerance range be replaced.

NOTE

This guide contains details for two types of switching frequency filter capacitors.

- 1. A capacitor that is designed to support lower quality power supply conditions with up to 8 % THD_v on the grid. These capacitors are listed in Table 3-14 to Table 3-17 and Table 10-20 to Table 10-23. The system drawings for these capacitors are found in Figure 4-4 to Figure 4-8.
- 2. A capacitor that is designed to support high quality, low harmonic supplies with up to 2 % THD_v on the grid. These capacitors are listed in Table 3-18 to Table 3-21 and Table 10-24 to Table 10-27. The system drawings for these capacitors can be found in Figure 4-9 to Figure 4-13.

To determine which filter capacitors are best suited, the distortion level of the supply can be measured using a spectrum analyzer or distortion analyzer.

3.9.4 Optional switching frequency filter capacitor fusing

The switching frequency filter capacitors are designed to function without the need for additional branch fusing provided the following conditions are met.

- SFF capacitor cable length is less than or equal to 3 metres.
- · SFF capacitor cable length is greater than 3 metres with cables sized for the main regen system supply fuses, where practical.

If the above criteria is not met then fuses must be installed.

If fuses are not installed, under fault conditions the main regen system supply fuses will clear to isolate the system from the mains supply.

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
--------------------	--------------	------------------------	---------------	----------------------------	----------------------------	-----------------	--------------	------------	-------------------	------------------	-------------	-------------------

3.9.5 Regen filter components for low quality/high harmonic power supplies

These components are used to form the regen input filter and prevent switching frequency harmonic currents getting back onto the supply. If the filter is not fitted, the presence of currents in the kHz region could cause supply problems or disturbance to other equipment.

The SFF capacitors listed in tables 3-14 to 3-17 are also available from the supplier, Kemet. The suppliers part numbers are listed in these tables.

Table 3-14 200 V (200 V to 240 V ±10 %) Regen filter components to support up to 8 % THD, on the grid

Drive	mode	R	egen in	ductor	5	FF ind	uctor				SFF capa	citor		
Heavy Duty	Normal Duty	mH	Arms	Part number	mH	Arms	Part number		citor nation Cap bank B	Capacitor connection	Rated voltage Vac	CT part number/ supplier part	Max. capacitor current per can @ 50 °C	Fuse rating (A)
								μF	μF			number	(Arms)	
03200080	03200066	3.500	9.6	4401-0310	0.880	9.6	4401-1310							12
03200106	03200080	2.700	11	4401-0311	1.500	11	4401-1311					1610-8104		8
	03200106	2.700	11					10		Delta	780	000400054	15	8
04200137	04200137*	2.200	15.5	4401-0312	1.100	15.5	4401-1312					C20AQGR51 00AASK		10
04200185*		2.200	15.5											10
05200250*	04200185*	1.600	22	4401-0313	0.700	22	4401-1313							8
06200330*		1.100	31	4401-0314	0.500	31	4401-1314	22		Star	550	1610-8224 C20AKGR52 20AASK	25	8
	05200250	1.100	01	1101 0011	0.000		11011011	10		Delta	780	1610-8104 C20AQGR51 00AASK	15	8
	06200330	0.600	56	4401-0316	0.300	56	4401-1316					1610-8334		16
06200440*		0.810	42	4401-0315	0.400	42	4401-1315	33		Star	550	C20AKGR53 30AASK	30	10
07200610*		0.600	56	4401-0316	0.300	56	4401-1316	15			640	1610-8154 C20ALGR 5150AASK	20	12
	06200440*	0.000	30	4401-0310	0.300	30	4401-1310	33	Not			1610-8334 C20AKGR53 30AASK	30	10
07200750	07200610	0.400	80	4401-0318	0.200	80	4401-1318		fitted			1610-8224		20
	07200750	0.320	105	4401-0319	0.160	105	4401-1319	22				C20AKGR52	25	25
07200830*		0.400	80	4401-0318	0.200	80	4401-1318					20AASK		20
08201160*		0.320	105	4401-0319	0.160	105	4401-1319	33				1610-8334 C20AKGR53 30AASK	30	25
	07200830*	0.020	100	1101 0010	0.100	100	11011010	22				1610-8224 C20AKGR52 20AASK	25	25
08201320	08201160	0.220	156	4401-0321	0.110	156	4401-1321	33		Delta	550	1610-8334 C20AKGR53 30AASK	30	32
09201760		0.180	192					68				1610-8684 C20AKGR56 80AASK	40	40
	08201320	0.180	192	4401-0322	0.088	192	4401-1322	47				1610-8474 C20AKGR54 70AASK	35	40
09202190*	09201760*	0.180	192	1			1					1610-8684		40
	09202190*	0.140	250	4401-0323	0.068	250	4401-1323	68				C20AKGR56 80AASK	40	50
10202830	10202830*	0.110	312	4401-0324	0.055	312	4401-1324					1610-8474		63
10203000	10005555	0.110	312					47	47			C20AKGR54 70AASK	35	63
	10203000*	0.100	350	4401-0325	0.048	350	4401-1325					IUAAUN		80

^{*} Modify Rated Current (05.007) to match current rating of inductor.

Safety		Product	System	Mechanical	Electrical	Getting		_	Technical	Component		UL
information	Introduction	Information	-,7 - ; -	Installation	Installation	started	Optimization	Parameters	data	sizing	Diagnostics	Information

Table 3-15 400 V (380 V to 480 V ±10 %) Regen filter components to support up to 8 % THD_v on the grid

Drive	mode	R	egen in	ductor	,	SFF ind	luctor				SFF capaci	tor		
2ve			- 9 - 11						ncitor nation			CT part	Max.	
Heavy Duty	Normal Duty	mH	Arms	Part number	mH	Arms	Part number	Cap bank A µF	Cap bank B µF	Capacitor connection	Rated voltage Vac	number/ supplier part number	current per can @ 50 °C (Arms)	Fuse rating (A)
03400078	03400078*	6.300	9.5	4401-0405	3.160	9.5	4401-0162							20
03400100*	03400100*	5.000		4401-0406	2.500	12	4401-0163					1610-8104		20
04400150	03400100		12	4401-0406		12	4401-0103	10		Delta	780		15	20
04400172*	01100100	3.750	16	4401-0407	1.875	16	4401-0164	10		Dona	700	C20AQGR 5100AASK	10	20
05400270*	04400172	2.400	25	4401-0408	1.200	25	4401-0165					0.00,0.0.0		10
05400300	05400270													16
06400350*		1.760	34	4401-0409	0.880	34	4401-0166	15		Star	640	1610-8154 C20ALGR 5150AASK	20	10
	05400300							10		Delta	780	1610-8104 C20AQGR 5100AASK	15	16
06400420*	06400350	1.500	40	4401-0410	0.750	40	4401-0167					1610-8154		10
06400470*	06400420*	1.300	46	4401-0411	0.650	46	4401-0168	15			640	C20ALGR 5150AASK	20	16
	06400470*	1.000	60	4401-0412	0.500	60	4401-0169	22	Not fitted	Star	550	1610-8224 C20AKGR 5220AASK	25	16
07400660	07400660*											1610-8104		20
07400770*		0.780	74	4401-0413	0.390	77	4401-0170	10		Delta	780	C20AQGR	15	25
07401000*	07400770	0.630	96	4401-0414	0.315	96	4401-0171					5100AASK		25
08401340*		0.480	124	4401-0415	0.240	124	4401-0172	47		Star	550	1610-8474 C20AKGR 5470AASK	35	32
	07401000	0.460	124	4401-0415	0.240	124	4401-0172	15		Delta	640	1610-8154 C20ALGR 5150AASK	20	32
08401570*	08401340	0.380	156	4401-0416	0.190	156	4401-0173					1610-8684		40
09402000*	08401570* 09402000*	0.330	180	4401-0417	0.165	180	4401-0174	68		Star		C20AKGR 5680AASK 1610-8334	40	50 50
09402000	09402000	0.300	210	4401-0418	0.135	220	4401-0175	33				C20AKGR 5330AASK	30	50
10402700								22	22			1610-8224 C20AKGR 5220AASK	25	63
	09402240	0.200	300	4401-0419	0.100	300	4401-0176	47	Not fitted		550	1610-8474 C20AKGR 5470AASK	35	63
10403200*	10402700*							22	22	Delta		1610-8224 C20AKGR 5220AASK	25	63
	10403200*	0.168	350	4401-0420	0.080	350	4401-1205	33	33			1610-8334 C20AKGR 5330AASK	30	80
11403770 11404170 11404640	11403770	0.135	437	4401-0292	0.067	437	4401-0301	47	47			1610-8474	35	100 125 125
11404040	11404170 11404640	0.121	487	4401-0293	0.060	487	4401-0302		41			C20AKGR 5470AASK	JU	125 125 125

^{*} Modify Rated Current (05.007) to match current rating of inductor.

Safety		Product	Systom	Mechanical	Electrical	Getting			Technical	Component		UL
information	Introduction	Product Information	System design	Installation	Installation	started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	Information

Table 3-16 $\,$ 575 V (500 V to 575 V ± 10 %) Regen filter components to support up to 8 % THD $_{v}$ on the grid

Drive	mode	R	egen in	ductor	;	SFF ind	uctor			(SFF capaci	tor		
Heavy	Normal			Part			Part		icitor nation	Capacitor	Rated	CT part number/	Max. capacitor	Fuse
Duty	Duty	mH	Arms	number	mH	Arms	number	Cap bank A μF	Cap bank B µF	connection	voltage Vac	supplier part number	current per can @ 50 °C (Arms)	rating (A)
06500150	06500150	5.300	19	4401-0210										6
06500190		5.300	19	4401-0210	1.400	22	4401-1211							6
06500230*	06500190	4.600	22	4401-0211	1.400							1610-8104		6
06500290*	06500230	3.800	27	4401-0212		36	4401-1213	10			780	C20AQGR	15	6
06500350	06500290	2.800	36	4401-0213							5100AASK		8	
07500440*	06500350	2.400	43	4401-0214	1.000	52	4401-1215							8
07500550*	07500440*	1.900	52	4401-0215	0.800	63	4401-1216		Not					10
08500630	07500550*	1.600	63	4401-0216	0.600	85	4401-1217	15	Not fitted	640	1610-8154 C20ALGR 5150AASK	20	12	
08500860*	08500630*	1.200	85	4401-0217	0.510	100	4401-1218	22				1610-8224 C20AKGR 5220AASK	25	16
09501040*	08500860*	1.000	100	4401-0218	0.400	125	4401-1219	33				1610-8334	30	20
09501310*	09501040	0.810	125	4401-0219	0.350	144	4401-1220	47		Star		C20AKGR 5330AASK	35	25
10501520*		0.700	144	4401-0220	0.300	168	4401-1221	22	22			1610-8224 C20AKGR 5220AASK	25	25
	09501310*	0.700	144	4401-0220	0.300	100	4401-1221	47	Not fitted		550	1610-8474 C20AKGR 5470AASK	35	25
10501900	10501520*			4401-0421						1		1610-8334		32
	10501900*	0.530	192	4401-0421	0.210	192	4401-1223	33	33			C20AKGR 5330AASK	30	32
11502000		0.441	230	4401-0297	0.221	230	4401-0306							40
	11502000	0.361	281	4401-0298	0.181	281	4401-0307	7						63
11502540		0.441	230	4401-0297	0.221	230	4401-0306		47			1610-8474	35	40
	11502540	0.361	281	4401-0298	0.181	281	4401-0307	41	41			C20AKGR 5470AASK	30	63
11502850		0.441	230	4401-0297		4401-0306							40	
	11502850	0.361	281	4401-0298	0.181	281	4401-0307							63

^{*} Modify Rated Current (05.007) to match current rating of inductor.

Safety		Product	System	Mechanical	Electrical	Getting		_	Technical	Component		UL
information	Introduction	Information	-,7 - ; -	Installation	Installation	started	Optimization	Parameters	data	sizing	Diagnostics	Information

Table 3-17 $\,$ 690 V (500 V to 690 V \pm 10 %) Regen filter components to support up to 8 % THD $_{v}$ on the grid

Drive	mode	R	egen in	ductor	,	SFF ind	uctor			(SFF capaci	itor		
							_		citor nation		Rated	CT part number/	Max. capacitor	Fuse
Heavy Duty	Normal Duty	mH	Arms	Part number	mH	Arms	Part number	Cap bank A μF	Cap bank B µF	Capacitor connection	voltage Vac	supplier part number	current per can @ 50 °C (Arms)	rating (A)
07600190		5.300	19	4401-0210		22	4401-1211							6
07600240*	07600190*	4.600	22	4401-0211	1.400	22	4401-1211					1610-8104		6
07600290*	07600240*	3.800	27	4401-0212	1.400	36	4401-1213	10			780		15	8
07600380*	07600290*	2.800	36	4401-0213		30	4401-1213	10			700	C20AQGR	15	8
07600440*	07600380*	2.400	43	4401-0214	1.200	43	4401-1214					5100AASK		10
07600540*	07600440	1.900	52	4401-0215	1.000	52	4401-1215							12
08600630		1.600	63	4401-0216	0.800	63	4401-1216	15			640	1610-8154 C20ALGR 5150AASK	20	16
	07600540*	1.000	00	4401-0210	0.000	03	4401-1210	10	Not fitted		780	1610-8104 C20AQGR 5100AASK	15	20
08600860*	08600630*	1.200	85	4401-0217	0.600	85	4401-1217	22	illed			1610-8224 C20AKGR 5220AASK	25	20
09601040*		1.000	100	4401-0218	0.510	100	4401-1218	33				1610-8334 C20AKGR 5330AASK	30	20
	08600860*	1.000	100	4401-0216	0.510	100	4401-1216	22		Star		1610-8224 C20AKGR 5220AASK	25	25
09601310*												1610-8474		32
	09601040	0.810	125	4401-0219	0.400	125	4401-1219	47				C20AKGR 5470AASK	35	32
10601500*		0.700		4404 0000	0.050	444	4404 4000	22	22		550	1610-8224 C20AKGR 5220AASK	25	32
	09601310*	0.700	144	4401-0220	0.350	144	4401-1220	47	Not fitted		330	1610-8474 C20AKGR 5470AASK	35	32
10601780*	10601500*	0.600	168	4401-0221	0.300	168	4401-1221]		1610-8224		32
	10601780*	0.530	192	4401-0421	0.260	192	4401-1222	22	33			C20AKGR 5220AASK 1610-8334 C20AKGR 5330AASK	25	40
11602100	11602100	0.441	230	4401-0297	0.221	230	4401-0306]				50
11602380		0.441	230	4401-0297								1610-8474		50
	11602380	0.361	281	4401-0298	0.181	.181 281	4401-0307	47	47			C20AKGR	35	63
11602630		0.441	230	4401-0297	0.221	230	4401-0306					5470AASK		50
	11602630	0.361	281	4401-0298	0.181	281	4401-0307							63

^{*} Modify Rated Current (05.007) to match current rating of inductor.

Safety	Introduction	Product	System	Mechanical	Electrical	Getting	Optimization	Parameters	Technical	Component	Diagnostics	UL
information		Information	design	Installation	Installation	started	optzatio		data	sizing	2.49.100.00	Information

3.9.6 Regen filter components for high quality/low harmonic power supplies

These components are used to form the regen input filter and prevent switching frequency harmonic currents getting back onto the supply. If the filter is not fitted, the presence of currents in the kHz region could cause supply problems or disturbance to other equipment. The capacitors listed in Table 3-14 to Table 3-17 are designed for high quality power supplies with up to 2 % THD_v on the grid.

Table 3-18 200 V (200 V to 240 V ±10 %) Regen filter components to support up to 2 % THD_v on grid

Drive	mode		Regen ind	ductor		SFF indu	ctor			SFF capacito	or	
Heavy Duty	Normal Duty	mH	Arms	Part number	mH	Arms	Part number	Capacitor value µF	Rated voltage Vac	Part number	Capacitor current per can Arms	Fuse rating (A)
03200080	03200066	3.500	9.6	4401-0310	0.880	9.6	4401-1310	7	400	1664-1074	1.6	2
03200106	03200080	2.700	11					_				4
	03200106	2.700	11	4401-0311	1.500	11	4401-1311	7	400	1664-1074	1.8	4
04200137	04200137*	2.200	15.5	1101 0010	4.400	45.5	4404 4040		400	1004 1074		4
04200185*		2.200	15.5	4401-0312	1.100	15.5	4401-1312	7	400	1664-1074	2	4
05200250*	04200185*	1.600	22	4401-0313	0.700	22	4401-1313	17	400	1664-2174	3.8	6
06200330*	05200250	1.100	31	4401-0314	0.500	31	4401-1314	17	400	1664-2174	4.4	8
	06200330	0.600	56	4401-0316	0.300	56	4401-1316	32	525	1665-8324	8.1	16
06200440*		0.810	42	4401-0315	0.400	42	4401-1315	17	400	1664-2174	5.2	8
07200610*	06200440*	0.600	56	4401-0316	0.300	56	4401-1316	32	525	1665-8324	8.1	16
07200750	07200610	0.400	80	4401-0318	0.200	80	4401-1318	32	525	1665-8324	9.9	16
	07200750	0.320	105	4401-0319	0.160	105	4401-1319	64	400	1664-2644	15.8	25
07200830*		0.400	80	4401-0318	0.200	80	4401-1318	32	525	1665-8324	9.9	16
08201160*	07200830*	0.320	105	4401-0319	0.160	105	4401-1319	64	400	1664-2644	15.8	25
08201320	08201160	0.220	156	4401-0321	0.110	156	4401-1321	64	400	1664-2644	19.2	32
09201760	08201320	0.180	192	4401-0322	0.088	192	4401-1322	2 x 64	400	2 x	15.2	25
09202190*	09201760*	0.180	192	4401-0322	0.000	132	4401-1322	2 X 04	400	1664-2644	15.2	25
	09202190*	0.140	250	4401-0323	0.068	250	4401-1323	2 x 64	400	2 x 1664-2644	16.8	32
10202830	10202830*	0.110	312	4401-0324	0.055	312	4401-1324	2 x 64	400	2 x	19.2	32
10203000		0.110	312	++01-0324	0.055	312	4401-1324	2 X U4	400	1664-2644	19.2	32
	10203000*	0.100	350	4401-0325	0.048	350	4401-1325	2 x 64	400	2 x 1664-2644	20.5	32

^{*} Modify Rated Current (05.007) to match current rating of inductor.

Safety	Introduction	Product	System	Mechanical	Electrical	Getting	Optimization	Parameters	Technical	Component	Diagnostics	UL Information
information	miroduction	Information	design	Installation	Installation	started	Optimization	1 didiliciois	data	sizing	Diagnostics	Information

Table 3-19 $\,$ 400 V (380 V to 480 V ±10 %) Regen filter components to support up to 2 % THD $_{\rm V}$ on grid

Drive	mode		Regen in	ductor		SFF ind	uctor		S	FF capacitor	•	
Heavy Duty	Normal Duty	mH	Arms	Part number	mH	Arms	Part number	Capacitor value	Rated voltage	Part number	Capacitor current per can	Fuse rating (A)
								μF	Vac		Arms	(~)
03400078	03400078*	6.300	9.5	4401-0405	3.160	9.5	4401-0162					6
03400100*		0.300	9.5	4401-0403	3.100	9.5	4401-0102				3.3	6
	03400100*	5.000	12	4401-0406	2.500	12	4401-0163	8		1610-7804		6
04400150	04400150*	3.75	16	4401-0407	1.875	16	4401-0164	O		1010-7004	3.5	6
04400172*		3.75	10	4401-0407	1.075	10	4401-0104				3.5	6
05400270*	04400172	2.400	25	4401-0408	1.200	25	4401-0165				4.1	6
05400300	05400270	1.760	34	4401-0409	0.880	34	4401-0166				13	20
06400350*	05400300	1.760	34	4401-0409	0.000	34	4401-0100				13	20
06400420*	06400350	1.500	40	4401-0410	0.750	40	4401-0167				13.1	20
06400470*	06400420*	1.300	46	4401-0411	0.650	46	4401-0168	32		1665-8324	13.3	25
	06400470*	1.000	60	4401-0412	0.500	60	4401-0169				13.9	25
07400660	07400660*	0.780	74	4401-0413	0.390	77	4404 0470				14.0	25
07400770*		0.780	74	4401-0413	0.390	77	4401-0170				14.8	25
07401000*	07400770	0.630	96	4401-0414	0.315	96	4401-0171		525		18.1	32
08401340*	07401000	0.480	124	4401-0415	0.240	124	4401-0172	20		4005 0004	20.1	32
08401570*	08401340	0.380	156	4401-0416	0.190	156	4401-0173	39		1665-8394	22.7	40
	08401570*	0.330	180	4401-0417	0.165	180	4401-0174				24.8	40
09402000*	09402000*	0.000	000	4404 0440	0.405	000	4404 0475				40.4	32
09402240*		0.300	202	4401-0418	0.135	200	4401-0175			_	18.4	32
10402700	09402240	0.000	200	4404 0440	0.400	200	4404 0470	2 x 39		2 x 1665-8394	00.4	32
10403200*	10402700*	0.200	300	4401-0419	0.100	300	4401-0176			1005-6594	20.1	32
	10403200*	0.168	350	4401-0420	0.080	350	4401-1205				25.4	40
11403770	11403770											50
11404170		0.135	437	4401-0292	0.067	437	4401-0301					50
11404640							3x 64		3 x 1665-8644	33.5	50	
	11404170		4404 0202	0.000	407	4404 0202			1000-0044		50	
	11404640	0.121	487	4401-0293	0.060	487	4401-0302					50

^{*} Modify Rated Current (05.007) to match current rating of inductor.

		1										
Safety	Introduction	Product	.,	Mechanical	Electrical	Getting	Optimization	Parameters		Component	Diagnostics	UL
information	madadadi	Information	design	Installation	Installation	started	Optimization	1 didiniotoro	data	sizing	Diagnoonoo	Information

Table 3-20 575 V (500 V to 575 V ± 10 %) Regen filter components to support up to 2 % THD $_{\rm V}$ on grid

Drive	mode		Regen i	nductor		SFF ind	uctor			SFF capacite	or		
Heavy Duty	Normal Duty	mH	Arms	Part number	mH	Arms	Part number	Capacitor value	Rated voltage	Part number	Capacitor current per can	Fuse rating (A)	
								μF	Vac		Arms		
06500150	06500150	5.300	19	4401-0210								8	
06500190					1.400	22	4401-1211				5.2	8	
06500230*	06500190	4.600	22	4401-0211								8	
06500290*	06500230	3.800	27	4401-0212		36	4401-1213				5.3	8	
06500350	06500290	2.800	36	4401-0213	1.200	43	4401-1214	11.2		1666-8113	5.6	10	
07500440*	06500350	2.400	43	4401-0214	1.000	52	4401-1215				5.9	10	
07500550*	07500440*	1.900	52	4401-0215	0.800	63	4401-1216		690		6.4	10	
08500630	07500550*	1.600	63	4401-0216	0.600	85	4401-1217				6.9	12	
08500860*	08500630*	1.200	85	4401-0217	0.510	100	4401-1218				8.2	16	
09501040*	08500860*	1.000	100	4401-0218	0.400	125	4401-1219				12.5	20	
09501310*	09501040	0.810	125	4401-0219	0.350	144	4401-1220	22.5		1666-8223	13.8	25	
10501520*	09501310*	0.700	144	4401-0220	0.300	168	4401-1221				14.9	25	
10501900	10501520*	0.530	192	4401-0421	0.210	192	4401-1223	2 x 22.5		2 x	12.2	20	
	10501900*	0.550	132	4401-0421	0.210	132	4401-1223	Z X ZZ.3		1666-8223	12.2	20	
11502000		0.441	230	4401-0297	0.221	230	4401-0306	2 x 46.2***		2 x 1668-8464		40	
	11502000	0.361	281	4401-0298	0.181	281	4401-0307	3 x 46.2***		3 x 1668-8464		40	
11502540		0.441	230	4401-0297	0.221	230	4401-0306	2 x 46.2***	800	2 x 1668-8464	24	40	
	11502540	0.361	281	4401-0298	0.181	281	4401-0307	3 x 46.2***	600	3 x 1668-8464	24	40	
11502850		0.441	230	4401-0297	0.221	230	4401-0306	2 x 46.2***		2 x 1668-8464		40	
	11502850	0.361	281	4401-0298	0.181	281	4401-0307	3 x 46.2***		3 x 1668-8464		40	

^{*} Modify Rated Current (05.007) to match current rating of inductor.

^{***} Delta connection

Safety	Introduction	Product	System	Mechanical	Electrical	Getting	Optimization	Parameters	Technical	Component	Diagnostics	UL
information	introduction	Information	design	Installation	Installation	started	Optimization	1 didilicicis	data	sizing	Diagnostics	Information

Table 3-21 690 V (500 V to 690 V ±10 %) Regen filter components to support up to 2 % THD, on grid

Drive	mode		Regen i	nductor		SFF in	ductor			SFF capacitor		
Heavy Duty	Normal Duty	mH	Arms	Part number	mH	Arms	Part number	Capacitor value	Rated voltage	Part number	Capacitor current per can Arms	Fuse rating
_	_							μF	Vac			(A)
07600190		5.300	19	4401-0210		22	4401-1211				4.7	8
07600240*	07600190*	4.600	22	4401-0211	1.400		1101 1211				4.8	8
07600290*	07600240*	3.800	27	4401-0212	1.400	36	4401-1213				5	8
07600380*	07600290*	2.800	36	4401-0213		30	4401-1213	8.3		1668-7833	5.5	8
07600440*	07600380*	2.400	43	4401-0214	1.200	43	4401-1214				5.8	10
07600540*	07600440	1.900	52	4401-0215	1.000	52	4401-1215				6.6	10
08600630	07600540*	1.600	63	4401-0216	0.800	63	4401-1216				7.3	12
08600860*	08600630*	1.200	85	4401-0217	0.600	85	4401-1217				11.6	20
09601040*	08600860*	1.000	100	4401-0218	0.510	100	4401-1218	16.6		1668-8163	12.8	20
09601310*	09601040	0.810	125	4401-0219	0.400	125	4401-1219				14.5	25
10601500*	09601310*	0.700	144	4401-0220	0.350	144	4401-1220		800	_	10.9	20
10601780*	10601500*	0.600	168	4401-0221	0.300	168	4401-1221	2 x 16.6		2 x 1668-8163	11.6	20
	10601780*	0.530	192	4401-0421	0.260	192	4401-1222			1008-8103	12.4	20
11602100	11602100	0.441	230	4401-0297	0.004	000	4404 0000	0 40 0**		2 x		40
11602380		0.441	230	4401-0297	0.221	230	4401-0306	2 x 46.2**		1668-8464		40
	11602380	0.361	281	4401-0298	0.181	281	4401-0307	3 x 46.2**		3 x 1668-8464	28	40
11602630		0.441	230	4401-0297	0.221	230	4401-0306	2 x 46.2**		2 x 1668-8464	20	40
	11602630	0.361	281	4401-0298	0.181	281	4401-0307	3 x 46.2**		3 x 1668-8464		40

^{*} Modify Rated Current (05.007) to match current rating of inductor.

The 3-phase switching frequency filter (SFF) capacitors are situated on the input of the Regen system. If the harmonic distortion of the supply is high for extended periods then this can cause a reduction of the service life of the capacitors. The effect of this is to reduce the capacitance value. If high levels of harmonic distortion are expected then it is recommended that the capacitance values be checked **CAUTION** periodically, and capacitors which have fallen outside of their tolerance range be replaced.

NOTE

SFF capacitor current is the total rms line current per can, calculated the respective rated voltage +10 % 60 Hz, maximum capacitor tolerance (+10 %), and 3 kHz switching frequency.

NOTE

* SFF circuit protection is provided by the main Regen system supply fuses, providing the conditions outlined in section 11.1 Switching frequency filter (SFF) protection on page 308 are met.

3.9.7 **Varistors**

AC line voltage transients can typically be caused by the switching of large items of plant or by lightning strikes on another part of the supply system. If these transients are not suppressed they can cause damage to the insulation of the Regen input inductors, or to the Regen drive electronics.

The varistors shown in the table below are available from the supplier of the drive and should therefore be fitted as shown in section 4.2 Power connections on page 40.

Table 3-22 Varistor data

Drive rating	rating Voltage rating VPMs 5% 5		Quantity per system	Configuration	Part number
200 V	550	620		Line to line	2482-3291
(200 V to 240 V ±10 %)	680	760		Line to ground	2482-3211
400 V	550	620	3	Line to line	2482-3291
(380 V to 480 V ±10 %)	680	760	3	Line to ground	2482-3211
500 V	680	760		Line to line	2402-3211
(500 V to 575 V ±10 %)	1000	1200		Line to ground	2482-3218
690 V	385	550	6	2 in series line to line	2482-3262
(500 V to 690 V ±10 %)	1000	1200	3	Line to ground	2482-3218

Suitable DIN rail mounted surge protectors are also available from CITEL (DS40 series)

^{**} Delta connection.

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
--------------------	--------------	---------------------	---------------	----------------------------	----------------------------	--------------------	--------------	------------	----------------	------------------	-------------	-------------------

3.9.8 External softstart resistor

The Regen drive inrush current can be controlled by an external softstart resistor/ bypass circuit, this configuration can be used with a Regen system consisting of multiple Regen, multiple motoring or single Regen, multiple motoring drives.

For correct sizing of the softstart resistor, refer to section 11.2 Softstart resistor sizing on page 308.

Only pulse withstanding resistors should be used for charging the inverter system.

A range of suitable pulse withstanding resistors are available from Metallux (PWR-R).

3.10 Combined Regen input filters (combi filter)

The combi filter is a simplified solution consisting of a combined EMC filter and switching frequency filter, refer to section 4.7.2 *Combined Regen input filters (combi filter)* on page 75 for further information.

Combi filters listed in Table 3-23 below are equipped with an internal thermal switch to prevent the EMC filter inductor from overheating. The thermal switch must be configured to open the main supply contactor in the event of a thermal overload.

Regen inverter output current derating must be applied where necessary based on Regen inductor and combi filter capability. Models affected are denoted with * in Table 3-23 below. Combi filters listed in Table 3-23 are suitable for use in systems with less than 2 % THD_v on the grid.

Table 3-23 Combi filter selection

М	odel	Schaffner model	Current rating	Voltage rating	Rated frequency
Heavy duty	Normal duty	number	Α	Vac	Hz
07400660 & 07400770	06400470 & 074000660	FS6085-83-35-2	83	480	50/60
07401000 & 08401340*	07400770 & 07401000	FS6085-125-35-2	125	480	50/60
08401570	08401340	FS6085-168-40-2	168	480	50/60
09402000 & 09402240*	08401570 & 09402000*	FS6085-205-40-2	205	480	50/60
10402700 & 10403200*	09402240 & 10402700*	FS6085-300-99-2	300	480	50/60
	10403200*	FS6085-350-99-2	350	480	50/60
10601780	10601500 & 10601780	FS6085 HV -200-40-2	200	690	50/60

^{*} Regen inverter output current derating must be applied where necessary based on Regen inductor and combi filter capability.

NOTE

The range of combi filters covered in this section are available from Schaffner, the filters are not stocked by the supplier of the drive.

Safety Product Mechanical Electrical Getting Technical Component UL System design Introduction Optimization Parameters Diagnostics information Information Installation Installation started sizing Information data

4 System design

4.1 Introduction

The sizing of a Regen system must take into account the following factors:

- 1. AC power supply voltage variation
- 2. Motor rated current, rated voltage and power factor
- 3. Maximum required power and overload requirements
- 4. Heavy Duty / Normal Duty Regen drive ratings

In general, when designing a Regen system, equal Regen and motoring drive rated currents will work correctly. However, care must be taken to ensure that under worst case AC supply conditions the Regen drive is able to supply / absorb all the required power including total system losses.

If the Regen drive is unable to supply the full power required by the motoring drive(s), the DC bus voltage will drop, and in severe cases may lose synchronization with the AC power supply and trip. If the Regen drive is unable to regenerate the full power from the motoring drive(s) into the DC bus, then the Regen drive and motoring drive(s) will trip on over-voltage.

4.1.1 Single Regen, single motoring drive

The following calculations can be carried out for either a single Regen drive, motoring drive system or single Regen drive, multiple motoring drive system.

Example

In the case of a 30 A (*Normal Duty*), M600-05400270 operating in Regen mode from a 400 V supply, and a M600-05400270 driving a 400 V rated, 0.85 pf motor:

The rated power of the Regen drive is:

- $\sqrt{3} \times \text{Rated current} \times \text{Supply voltage}$
- = 1.73 × 30 × 400
- = 20.8 kW

The motoring drive can supply power:

- $\sqrt{3}$ × Rated current × Motor voltage × Power factor
- $= 1.73 \times 30 \times 400 \times 0.85$
- = 17.7 kW

Drive losses:

2 x Unidrive M600-05400270 = 648 W

When the motoring drive is supplying rated current to the motor, the Regen drive needs to provide 17.7 kW, plus drive losses = 18.348 kW. The Regen drive can supply 20.8 kW at rated current, which is ample, in this case.

Conversely, in some cases, a Regen drive of the same rating as the motoring drive, may not be able to supply enough power, as the following example shows:

Example

In the case of a 100 A (*Heavy Duty*), M600-07401000 operating in Regen mode, and a M600-07401000 driving a 75 kW, 400 V, 0.95 pf motor:

If the motoring drive is supplying 175 % maximum current, and the Regen drive has its 380 V supply at the lower limits of -10 % (342 Vac), then, with a Regen current limit of 175 %:

The Regen drive maximum available power is:

- $\sqrt{3} \times 175 \% \times Rated current \times Supply voltage$
- = 1.73 × 1.75 × 100 × 342
- = 103.5 kW

The motoring drives maximum power is:

- $\sqrt{3} \times 175 \% \times \text{Rated current} \times \text{Motor voltage} \times \text{Power factor}$
 - = 1.73 × 1.75 × 100 × 400 × 0.95
 - = 115 kW

Drive losses

2 x Unidrive M600-07401000 = 2.034 kW

The Regen drive is also required to supply the Regen and motoring drive losses in this example 2.034 kW which brings the total power requirement to 117.034 kW. However, this Regen drive is only capable of supplying approximately 103.5 kW and therefore a drive of a larger rating is required.

4.1.2 Multiple motoring drives

In multi-drive configurations, the Regen drive must be of a sufficient size to supply the net peak power demanded by the combined load of all motoring drives plus the combined losses, including its own losses.

Due to the effects of increased DC bus capacitance, there is a limit to the number of motoring drives that can be supplied from a Regen drive. This is true irrespective of the balance of power between the motoring drives and the Regen drive.

The previous calculations can be used for the sizing of multiple motoring drives also.

4.2 Power connections

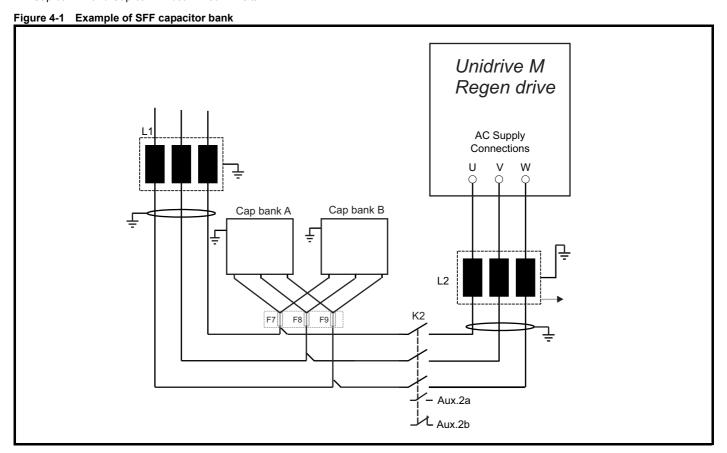
The following section covers the power connections required for Unidrive M Regen systems.

- For single Regen, single motoring systems, AC supply connections are made to L1, L2 and L3 drive terminals and the drive's internal soft start circuit is used for power-up.
- The single Regen, multiple motoring and multiple Regen, multiple
 motoring systems require an external charging circuit due to the
 extra capacitance from the additional drives. No AC connections are
 made to the Regen drive's L1, L2 and L3 terminals. The external
 charging circuit can consist of either the Unidrive M rectifier solution
 or an external softstart resistor as shown in Figure 4-5, Figure 4-6
 and Figure 4-7.
- For the Regen brake resistor replacement system, the motoring drive's internal soft start is used for power-up with no AC connections to L1, L2, L3 on the Regen drive.

For control circuit connections refer to section 6.6 *Control connections* on page 133.

NOTE

If the Regen system is not a standard configuration or changes are required to the following systems and set ups, contact the supplier of the drive.


Getting Safety Product System design Mechanical Electrical Technical Component Introduction Optimization Parameters Diagnostics information Installation Installation sizing Information

4.3 Switching frequency filter capacitor wiring configuration to support 8 % THD_V (Total Harmonic Distortion Voltage)

The wiring configuration of SFF capacitors is dependent on the regen drive size. For all drive sizes there is either one or two banks of capacitors, Cap bank A and Cap bank B. For certain drive sizes only Cap bank A is used and for other drive sizes Cap bank A and Cap bank B are used. Cap bank A and Cap bank B can be wired in either a Star or Delta configuration, depending on the drive size. Refer to Table 3-14 to Table 3-17 for further information.

There are 4 configurations of capacitor wiring:

- Cap bank A wired in Star, Cap bank B not fitted
- · Cap bank A wired in Delta, Cap bank B not fitted
- · Cap bank A and Cap bank B both wired in Star
- · Cap bank A and Cap bank B both wired in Delta

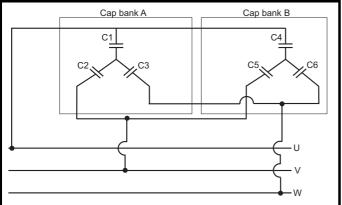
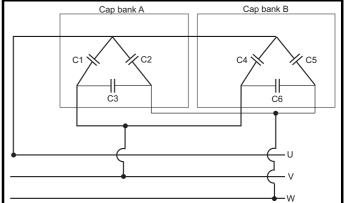



Figure 4-3 Delta configuration

Getting Safety Product System design Mechanical Electrical Technical Component UL Introduction Optimization Parameters Diagnostics information Information Installation Installation started data sizing Information

4.3.1 Single Regen, single motoring system to support up to 8 % THD_v

Figure 4-4 Power connections: Single Regen, single motoring system

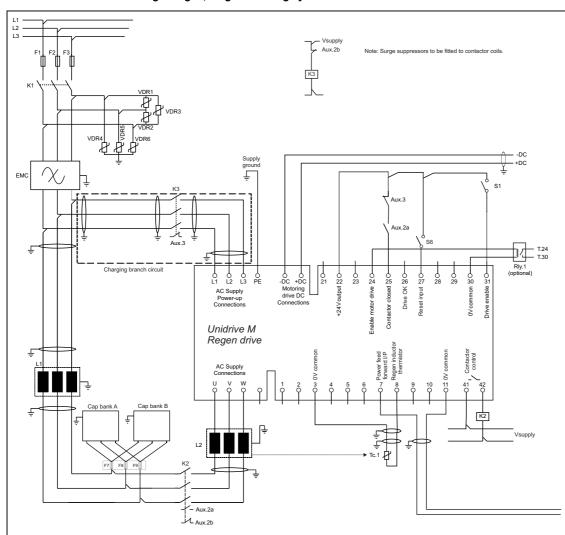
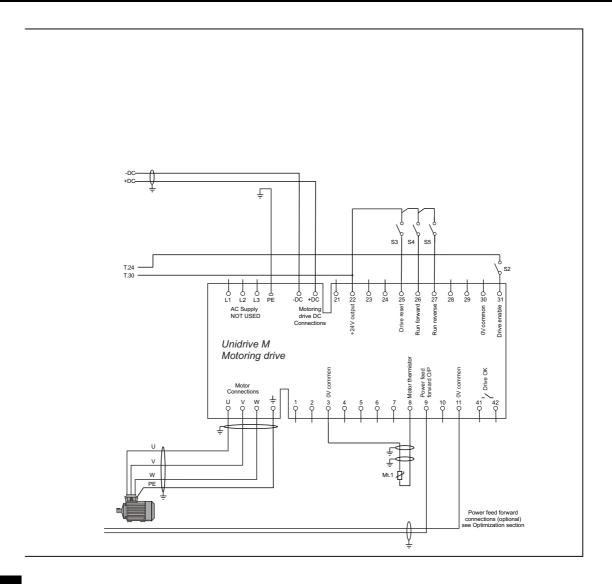


Table 4-1 Key to Figure 4-4

Key	Description					
L1, L2, L3	Three phase supply					
F1, F2, F3	Main Regen system supply fuses					
VDR1, VDR2, VDR3	Varistor network line-to-line					
VDR4, VDR5, VDR6	Varistor network line-to-ground					
EMC	Optional EMC Filter					
CBA	Switching frequency filter capacitor bank A					
CBB	Switching frequency filter capacitor bank B					
L1	Switching frequency filter inductor					
L2	Regen inductor					
K1	Main supply switch or contactor					
K2	Regen drive main contactor					
K3	Charging contactor					
Aux.3	K3 NC auxiliary contact					
Aux.2a	K2 NO auxiliary contact					
Aux.2b	K2 NC auxiliary contact					
Rly.1	Optional isolation for enable between Regen and motoring drive					
Mt.1	Motor thermistor					
Tc.1	Regen inductor thermistor					
Vsupply	System control supply					
+DC, -DC	Motoring drive power connection to Regen drive					
S1	Regen drive enable					
S2	Motoring drive enable					
S3	Motoring drive reset					
S4	Motoring drive run forward					

Table 4-1 Key to Figure 4-4


Key	Description
S5	Motoring drive run reverse
S6	Regen drive reset input (Pr 08.024 = Pr 10.033)
F7, F8, F9	Optional switching frequency filter capacitor fuses

* Unidrive M Frame 11 and all new generation Inductors only. Figure 4-4 shows both the power and control connections for the standard Regen solution this being a single Regen and single motoring drive system. For this solution the Vac supply is temporarily connected to the Regen drive's L1, L2, L3 inputs for initial power-up only, removing the need for an external charging circuit. The main AC supply to L1, L2, L3 on the Regen drive (K3) is interlocked with the Regen drive's enable preventing operation when the charging circuit is still connected.

Regen inductor thermistor must be configured to disable the drive in the event of a thermal overload. The switching frequency filter inductor thermistor must be configured to open the main supply contactor in the event of a thermal overload. This can be achieved through the use of an external thermal protection device/relay.

Safety Product Mechanical Electrical Getting Technical Component UL System Introduction Optimization Parameters Diagnostics design information Information Installation Installation started data sizing Information

NOTE

If K2 is installed in the position shown in Figure 4-4 then discharge resistors should be installed to the SFF Cap Bank A and where installed, Cap Bank B. If K2 is installed on the supply side of Cap Bank A and Cap Bank B then a discharge resistor is not required. Refer to Table 10-35 Discharge resistor details for SFF capacitors to support 8 % THDv on page 300.

NOTE

Where varistors other than those listed in Table 3-22 are fitted branch circuit protection may be required, where this is the case, follow the manufacturers recommendations.

NOTE

VDR1, VDR2 and VDR3 when operating with a 690 Vac supply should consist of two varistors each in series as detailed in Table 3-22 on page 38.

NOTE

To prevent inductive voltage spikes surge suppressors should be fitted to the contactor coils.

NOTE

The Regen inductor core losses are directly dependent on the switching frequency and specific core material and therefore selection is critical. As a result only Regen inductors specified in this guide should be used.

NOTE

SFF branch circuit protection may be required, refer to section 3.9.3 Switching frequency filter capacitor on page 30.

NOTE

Ensure that cables from both capacitor banks to the fuses, where fitted, are of a similar length.

							ì					
Safetv		Product	System	Mechanical	Electrical	Getting			Technical	Component		UII
Culoty	Introduction	1 100000	o jotoiii	Moonanioai	Licotilicai	Cotting	Ontimization	Parameters		Component	Diagnostics	OL
information	IIIIIOuuciioii	Information	desian	Installation	Installation	started	Optimization	Farameters	data	sizina	Diagnostics	Information
iiiioiiiiatioii		IIIIOIIIIatioii	uesigii	motanation	IIIStaliation	Starteu			uala	SIZITIY		IIIIOIIIIatioii

4.3.2 Single Regen, multiple motoring system using a Unidrive M Rectifier to support up to 8 % THD,

Figure 4-5 Power connections: Single Regen, multiple motoring system

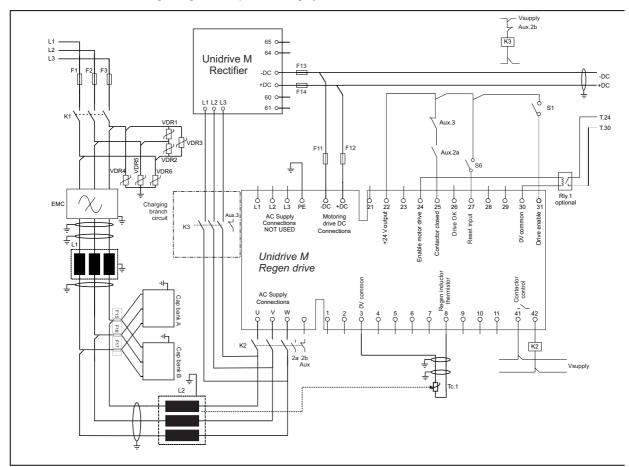


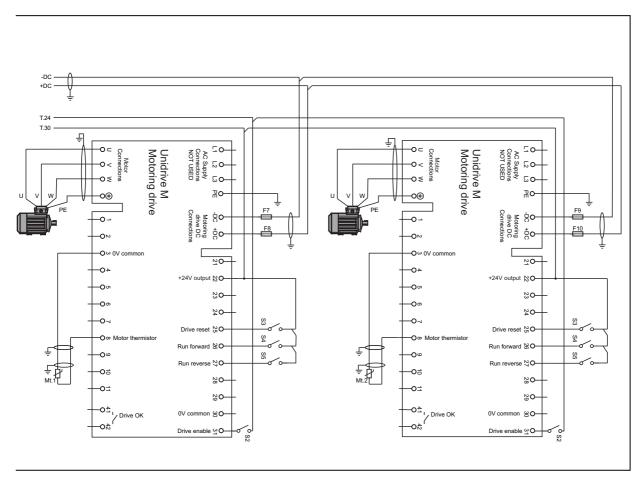
Table 4-2 Key to Figure 4-5

Table 4-2 Key to	rigure 4-5					
Key	Description					
L1, L2, L3	Three phase supply					
F1, F2, F3	Main Regen system supply fuses					
VDR1, VDR2, VDR3	Varistor network line-to-line					
VDR4, VDR5, VDR6	Varistor network line-to-ground					
F7, F8, F9, F10	DC bus fusing to motoring drive					
F11, F12	DC bus fusing to Regen drive					
F13, F14	Rectifier DC fuse protection					
EMC	Optional EMC filter					
CBA	Switching frequency filter capacitor bank A					
CBB	Switching frequency filter capacitor bank B					
L1	Switching frequency filter inductor					
L2	Regen inductor					
K1	Main supply contactor					
K2	Regen drive main contactor					
K3	Charging contactor					
Aux.2a	K2 NO auxiliary contact					
Aux.2b	K2 NC auxiliary contact					
Aux.3	K3 NC auxiliary contact					
Rly.1	Optional isolation for enable between Regen and motoring drive(s)					
Mt.1	Motor thermistor 1					
Mt.2	Motor thermistor 2					
Tc.1	Regen inductor thermistor					
+DC, -DC	Motoring drive power connection to Regen drive					
S1	Regen drive enable					
S2	Motoring drive enable					
S3	Motoring drive reset					
S4	Motoring drive run forward					
S5	Motoring drive run reverse					
S6	Regen drive reset input (Pr 08.024 = Pr 10.033)					
Vsupply	System control supply					
F15, F16, F17	Optional switching frequency filter capacitor fuses					

^{*} Unidrive M Frame 11 and all new generation Inductors only.

Figure 4-5 shows both the power and control connections for the multiple motoring Regen solution. For the multiple motoring system an external charging circuit is required due to the additional capacitance from the multiple motoring drives. The external charging circuit is interlocked with the Regen drive enable to prevent operation with this circuit still connected. In this example, the external charging circuit consists of a Unidrive M Rectifier module. Refer to section 3.5 *Unidrive M Rectifier* on page 23 for further details of the Unidrive M Rectifier.

NOTE


For the multiple motoring drive solution, the Regen drive and associated Unidrive M Rectifier must be sized to the total power requirements of all motoring drives.

Regen inductor thermistor must be configured to disable the drive in the event of a thermal overload. The switching frequency filter inductor thermistor must be configured to open the main supply contactor in the event of a thermal overload. This can be achieved through the use of an external thermal protection device/relay.

NOTE

The rectifier uses the Regen inductor as line reactors. The rectifier may be powered from the incoming supply using a standard line reactor if required.

Ensure that cables from both capacitor banks to the fuses, where fitted, are of a similar length.

NOTE

Where varistors other than those listed in Table 3-22 are fitted branch circuit protection may be required, where this is the case, follow the manufacturers recommendations.

NOTE

DC bus fusing is required for all motoring drives in a single Regen, multiple drive system in both the +DC and -DC.

NOTE

VDR1, VDR2 and VDR3 when operating with a 690 Vac supply should consist of two varistors each in series as detailed in Table 3-22 on page 38.

NOTE

To prevent inductive voltage spikes surge suppressors should be fitted to the contactor coils.

NOTE

The Regen inductor core losses are directly dependant on the switching frequency and specific core material and therefore selection is critical. As a result only Regen inductors specified in this guide should be used.

NOTE

SFF branch circuit protection may be required, refer to section 3.9.3 Switching frequency filter capacitor on page 30.

NOTE

If K2 is installed in the position shown in Figure 4-5 then discharge resistors should be installed to the SFF Cap Bank A and where installed, Cap Bank B. If K2 is installed on the supply side of Cap Bank A and Cap Bank B then a discharge resistor is not required. Refer to Table 10-35 *Discharge resistor details for SFF capacitors to support 8 % THDv* on page 300.

See Chapter 10 Technical data on page 276 for fuse rating information.

Unidrive M Rectifier

For a Regen system, the rectifier can be used to charge the common DC bus when the power is first applied, however this will once the Regen system is powered up no longer be required.

The total amount of capacitance on the common DC bus that the rectifier can drive is limited due to the inrush current (produced during power up and during brownouts). See Table 3-9 on page 26 for the capacitance limit. Unidrive M drive DC bus capacitance levels are available in Table 11-1 on page 308.

Safety Product Mechanical Electrical Gettina Technical Component System design Introduction Optimization Parameters Diagnostics information Information Installation Installation started data sizing Information

4.3.3 Single Regen, multiple motoring system using an external softstart resistor to support up to 8 % THD_v

Figure 4-6 Power connections: Single Regen, multiple motoring system

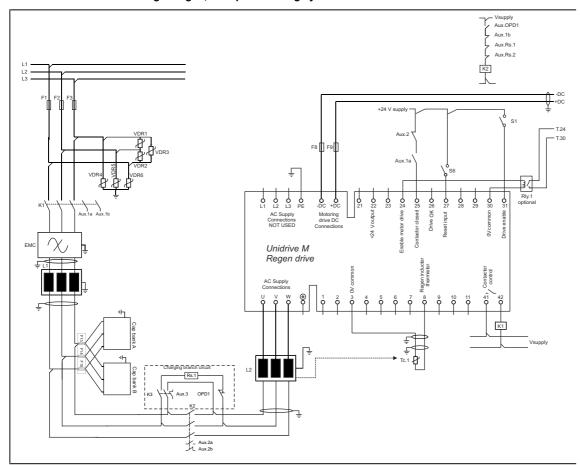


Table 4-3 Key to Figure 4-6

Table 4-3 Key to						
Key	Description					
L1, L2, L3	Three phase supply					
F1, F2, F3	Main Regen system supply fuses					
VDR1, VDR2, VDR3	Varistor network line-to-line					
VDR4, VDR5, VDR6	Varistor network line-to-ground					
F4, F5, F6, F7	DC bus fusing to motoring drive					
F8, F9	DC bus fusing to Regen drive					
EMC	Optional EMC filter					
CBA	Switching frequency filter capacitor bank A					
CBB	Switching frequency filter capacitor bank B					
L1	Switching frequency filter inductor					
L2	Regen inductor					
K1	Main supply contactor					
K2	Pre-charge contactor					
OPD1	Overload protection device for Rs.1					
Aux.1a	K1 NO auxiliary contact					
Aux.2	K2 NO auxiliary contact					
Aux.1b	K1 NC auxiliary contact					
Aux.OPD1	OPD1 NO auxiliary contact					
Rly.1	Optional isolation for enable between Regen and motoring drive(s)					
Mt.1	Motor thermistor 1					
Mt.2	Motor thermistor 2					
Tc.1	Regen inductor thermistor					
Rs.1	Softstart resistor 1					
+DC, -DC	Motoring drive power connection to Regen drive					
S1	Regen drive enable					
S2	Motoring drive enable					
S3	Motoring drive reset					
S4	Motoring drive run forward					
S5	Motoring drive run reverse					
S6	Regen drive reset input (Pr 08.024 = Pr 10.033)					
K3	Charging contactor					
Aux.3	SFF capacitor auxiliary contact					

Table 4-3 Key to Figure 4-6

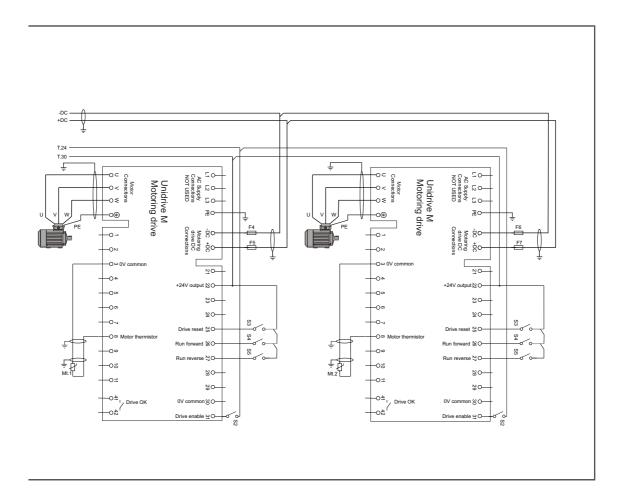
Key	Description
Vsupply	System control supply
F13, F14, F15	Optional switching frequency filter capacitor fuses

* Unidrive M Frame 11 and all new generation Inductors only.

Figure 4-6 shows both the power and control connections for the multiple motoring Regen solution. For this multiple motoring system solution an external charging circuit is required due to the additional capacitance from the multiple motoring drives. The external charging circuit is interlocked with the Regen drive enable to prevent operation with this circuit still connected. For sizing of the external charging circuit required for the multiple motoring drive system, refer to Chapter 11 *Component sizing* on page 308. For details on softstart resistors and protection refer to section 10.4.5 *Switching frequency filter capacitors* on page 299.

NOTE

For the multiple motoring drive solution, the Regen drive and associated external components must be sized to the total power requirements of all motoring drives.


NOTE

The Regen inductor core losses are directly dependant on the switching frequency and specific core material and therefore selection is critical. As a result only Regen inductors specified in this guide should be used.

Regen inductor thermistor must be configured to disable the drive in the event of a thermal overload. The switching frequency filter inductor thermistor must be configured to open the main supply contactor in the event of a thermal overload. This can be achieved through the use of an external thermal protection device/relay.

Safety Product System design Mechanical Electrical Getting Technical Component UL Introduction Optimization Parameters Diagnostics information Information Installation Installation started data sizing Information

NOTE

Where varistors other than those listed in Table 3-22 are fitted branch circuit protection may be required, where this is the case, follow the manufacturers recommendations.

NOTE

DC bus fusing is required for all motoring drives in a single Regen, multiple motoring drive system in both the +DC and -DC.

NOTE

VDR1, VDR2 and VDR3 when operating with a 690 Vac supply should consist of two varistors each in series as detailed in Table 3-22 on page 38.

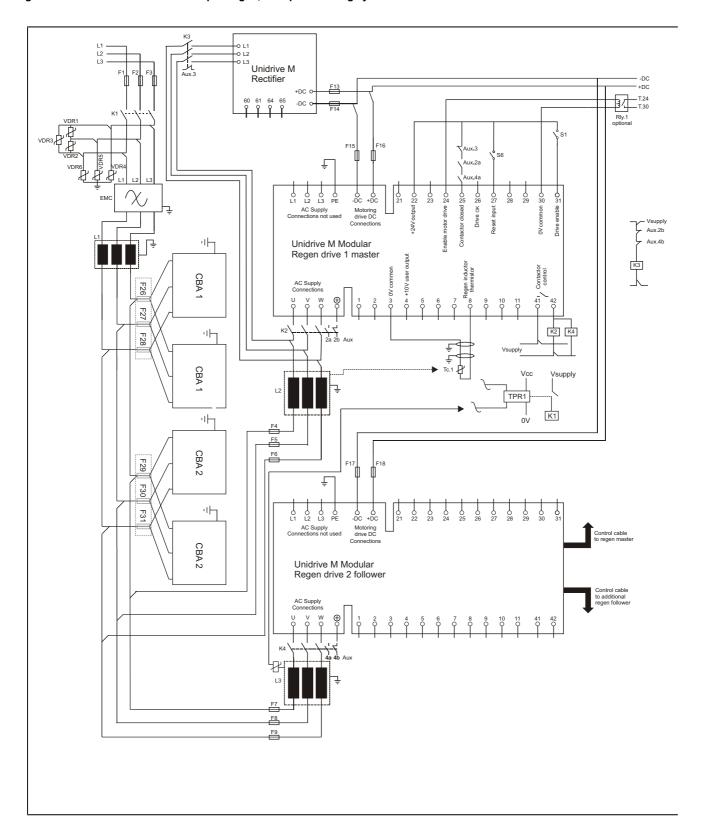
NOTE

To prevent inductive voltage spikes surge suppressors should be fitted to the contactor coils.

See Chapter 10 Technical data on page 276 for fuse rating information.

NOTE

SFF branch circuit protection may be required, refer to section 3.9.3 Switching frequency filter capacitor on page 30.


NOTE

Ensure that cables from both capacitor banks to the fuses, where fitted, are of a similar length.

Safety information	Introduction	Product Information	System	Mechanical Installation	Electrical Installation	Getting	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
information		information	aesign	installation	installation	started			data	sizing		information

4.3.4 Multiple Regen, multiple motoring using Unidrive M Rectifier to support up to 8 % THD_v

Figure 4-7 Power connections: Multiple Regen, multiple motoring system

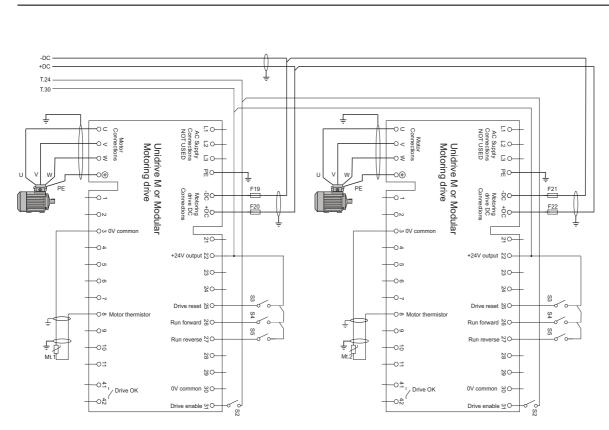


Table 4-4 Key to Figure 4-7

Key	Description
L1, L2, L3	Three phase supply
F1, F2, F3	Main Regen system supply AC fuses
F4, F5, F6	Regen drive 1 AC fuses
F7, F8, F9	Regen drive 2 AC fuses
F13, F14	DC Bus fusing to rectifier
F15, F16, F17, F18	DC Bus fusing to Regen drives
F19, F20, F21, F22	DC Bus fusing to motoring drive
VDR1, 2, 3	Varistor network line-to-line
VDR4, 5, 6	Varistor network line-to-ground
EMC	Optional EMC filter
L1	Switching frequency filter inductor
L2	Regen inductor (Regen 1)
L3	Regen inductor (Regen 2)
CBA 1	Switching frequency filter capacitor bank A (Regen 1)
CBB 1	Switching frequency filter capacitor bank B (Regen 1)
CBA 2	Switching frequency filter capacitor bank A (Regen 2)
CBB 2	Switching frequency filter capacitor bank B (Regen 2)
K1	Main supply contactor
K2	Regen drive 1 main contactor
K3	Charging contactor
K4	Regen drive 2 main contactor
Aux.2	OPD2 NO auxiliary contact
Aux.2a	K2 NO auxiliary contact Regen 1

Key	Description						
Aux.2b	K2 NC auxiliary contact Regen 1						
Aux.2c	K2 NC auxiliary contact Regen 1						
Aux.3	K3 NC auxiliary contact						
Aux.4a	K4 NO auxiliary contact Regen 2						
Aux.4b	K4 NC auxiliary contact Regen 2						
Aux.4c	K4 NC auxiliary contact Regen 2						
Rly.1	Optional isolation for enable between Regen and motoring drive(s)						
Mt.1	Motor thermistor 1						
Mt.2	Motor thermistor 2						
Tc.1	Regen inductor thermistor						
+DC, -DC	Motoring drive power connection to Regen drive						
S1	Regen drive enable						
S2	Motoring drive enable						
S3	Motoring drive reset						
S4	Motoring drive run forward						
S5	Motoring drive run reverse						
S6	Regen drive reset (user programmed)						
TPR1	Thermal protection relay						
Vsupply	System control supply						
F26, F27, F28, F29, F30, F31	Optional switching frequency filter capacitor fuses						

^{*} Unidrive M Frame 11 and all new generation inductors only.

Regen inductor thermistor must be configured to disable the drive in the event of a thermal overload. The switching frequency filter inductor thermistor must be configured to open the main supply contactor in the event of a thermal overload. This can be achieved through the use of an external thermal protection device/relay.

Safety	Introduction	Product	System	Mechanical	Electrical	Getting	Optimization	Parameters	Technical	Component	Diagnostics	UL
information	Introduction	Information	design	Installation	Installation	started	Optimization	Farameters	data	sizing	Diagnostics	Information

Where varistors other than those listed in Table 3-22 are fitted branch circuit protection may be required, where this is the case, follow the manufacturers recommendations.

NOTE

For the multiple motoring drive solution, the Regen drive and associated external components must be sized to the total power requirements of all motoring drives.

NOTE

The Regen inductor core losses are directly dependant on the switching frequency and specific core material and therefore selection is critical. As a result only Regen inductors specified in this guide should be used.

NOTE

VDR1, VDR2 and VDR3 when operating with a 690 Vac supply should consist of two varistors each in series as detailed in Table 3-22 on page 38.

NOTE

To prevent inductive voltage spikes surge suppressors should be fitted to the contactor coils.

NOTE

Multiple switching frequency filter inductors and EMC filters are permissible.

NOTE

SFF branch circuit protection may be required, refer to section 3.9.3 Switching frequency filter capacitor on page 30.

NOTE

If K2 is installed in the position shown in Figure 4-7 then discharge resistors should be installed to the SFF Cap Bank A and where installed, Cap Bank B. If K2 is installed on the supply side of Cap Bank A and Cap Bank B then a discharge resistor is not required. Refer to Table 10-35 *Discharge resistor details for SFF capacitors to support 8 % THDv* on page 300.

NOTE

Ensure that cables from both capacitor banks to the fuses, where fitted, are of a similar length.

Safety	Introduction	Product	System	Mechanical	Electrical	Getting	Optimization	Parameters	Technical	Component	Diagnostics	UL
information	Introduction	Information	design	Installation	Installation	started	Optimization	Faiailleteis	data	sizing	Diagnostics	Information

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information	ı
--------------------	--------------	------------------------	---------------	----------------------------	----------------------------	-----------------	--------------	------------	----------------	------------------	-------------	-------------------	---

4.3.5 Brake resistor replacement to support up to 8 % THD_v

Figure 4-8 Power connections: Regen drive as a brake resistor replacement

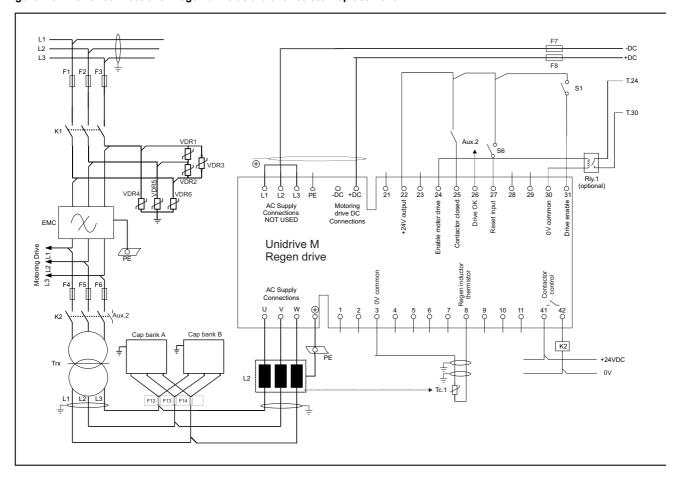
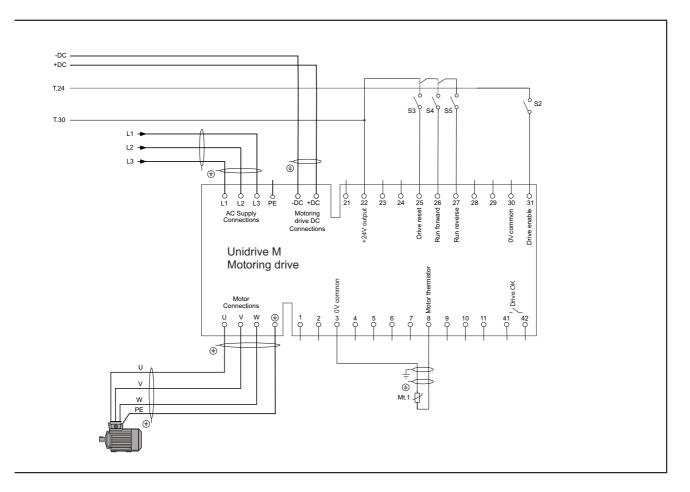



Table 4-5 Key to Figure 4-8

Key	Description
L1, L2, L3	Three phase supply
F1, F2, F3	Main Regen system supply fuses
F4, F5, F6	Regen drive fusing
F7, F8	DC Fusing (see Note)
VDR1, VDR2, VDR3	Varistor network line-to-line 550Vac
VDR4, VDR5, VDR6	Varistor network line-to-ground 680Vac
EMC	EMC Filter
CBA	Switching frequency filter capacitor bank A
CBB	Switching frequency filter capacitor bank B
L2	Regen inductor
K1	Main supply switch or contactor
K2	Regen drive main contactor
Trx	Isolating transformer
Aux.2	Regen drive main contactor auxiliary
Rly.1	Optional isolation for enable between Regen and motoring drive(s)
Mt.1	Motor thermistor
Tc.1	Regen inductor thermistor
+DC, -DC	Motoring drive power connection to Regen drive
S1	Regen drive enable
S2	Motoring drive enable
S3	Motoring drive reset
S4	Motoring drive run forward
S5	Motoring drive run reverse
S6	Regen drive reset input (Pr 08.024 = Pr 10.033)
F12, F13, F14	Optional switching frequency filter capacitor fuses

Safety Product Mechanical Electrical Getting Technical UL Component System Introduction Optimization Parameters Diagnostics information Information Installation Installation started data sizing Information design

In many applications, the motoring power can be significantly higher than the braking power. If sinusoidal input currents are not required, it is difficult to justify the cost of a Regen drive rated at the full motoring power. In these applications it may be desirable to take the lower cost option of a smaller Regen drive which is only used to return the braking energy to the AC supply. When a Regen drive is used as a dynamic brake resistor replacement, connections must be made as shown in Figure 4-8.

NOTE

Where varistors other than those listed in Table 3-22 are fitted branch circuit protection may be required, where this is the case, follow the manufacturers recommendations.

NOTE

DC bus fusing is required where the Regen drive is smaller than the motoring drives. See Chapter 10 *Technical data* on page 276 for fuse rating information.

NOTE

For the multiple motoring drive solution, the Regen drive and associated external components must be sized to the total power requirements of all motoring drives.

NOTE

The Regen inductor core losses are directly dependant on the switching frequency and specific core material and therefore selection is critical. As a result only Regen inductors specified in this guide should be used.

NOTE

To prevent inductive voltage spikes surge suppressors should be fitted to the contactor coils.

NOTE

SFF branch circuit protection may be required, refer to section 3.9.3 Switching frequency filter capacitor on page 30.

NOTE

Ensure that cables from both capacitor banks to the fuses, where fitted, are of a similar length.

The Isolating transformer, Trx, can be prone to thermal overload. Ensure that thermal overload protection is fitted.

Getting Safety Product System design Mechanical Electrical Technical Component Introduction Optimization Parameters Diagnostics information Installation Installation sizing Information

4.4 Switching frequency filter capacitor wiring configuration to support 2 % THD_v

4.4.1 Single Regen, single motoring system to support up to 2 % THD_v

Figure 4-9 Power connections: Single Regen, single motoring system

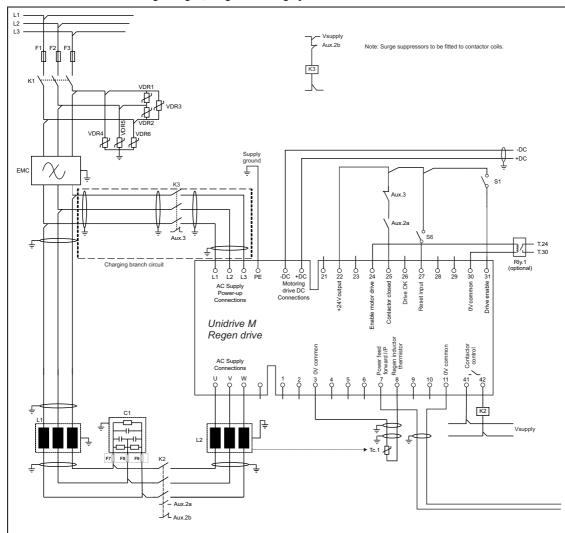
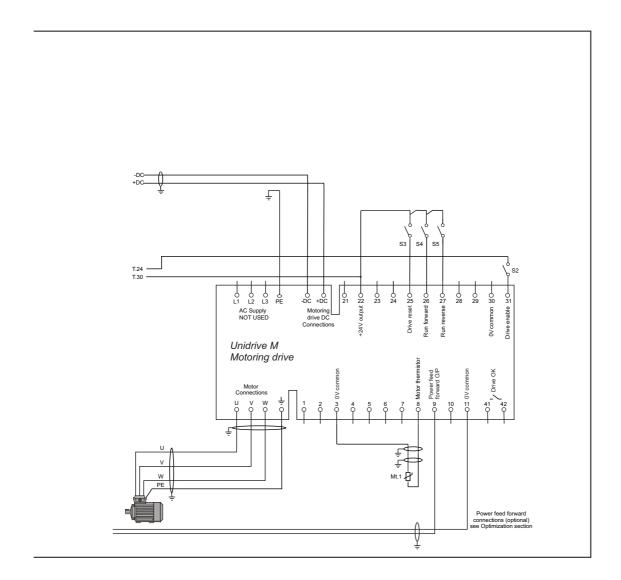


Table 4-6 Key to Figure 4-9

Table 4-6 Key to	Figure 4-9							
Key	Description							
L1, L2, L3	Three phase supply							
F1, F2, F3	Main Regen system supply fuses							
VDR1, VDR2, VDR3	Varistor network line-to-line							
VDR4, VDR5, VDR6	Varistor network line-to-ground							
EMC	Optional EMC Filter							
C1	Switching frequency filter capacitor							
L1	Switching frequency filter inductor							
L2	Regen inductor							
K1	Main supply switch or contactor							
K2	Regen drive main contactor							
K3	Charging contactor							
Aux.3	K3 NC auxiliary contact							
Aux.2a	K2 NO auxiliary contact							
Aux.2b	K2 NC auxiliary contact							
Rly.1	Optional isolation for enable between Regen and motoring drive							
Mt.1	Motor thermistor							
Tc.1	Regen inductor thermistor							
Vsupply	System control supply							
+DC, -DC	Motoring drive power connection to Regen drive							
F7, F8, F9	Optional switching frequency filter capacitor fuses							

Table 4-6 Key to Figure 4-9


Key	Description
S1	Regen drive enable
S2	Motoring drive enable
S3	Motoring drive reset
S4	Motoring drive run forward
S5	Motoring drive run reverse
S6	Regen drive reset input (Pr 08.024 = Pr 10.033)

* Unidrive M Frame 11 and all new generation Inductors only. Figure 4-9 shows both the power and control connections for the standard Regen solution this being a single Regen and single motoring drive system. For this solution the Vac supply is temporarily connected to the Regen drive's L1, L2, L3 inputs for initial power-up only, removing the need for an external charging circuit. The main AC supply to L1, L2, L3 on the Regen drive (K3) is interlocked with the Regen drive's enable preventing operation when the charging circuit is still connected.

Regen inductor thermistor must be configured to disable the drive in the event of a thermal overload. The switching frequency filter inductor thermistor must be configured to open the main supply contactor in the event of a thermal overload. This can be achieved through the use of an external thermal protection device/relay.

Safety	Introduction	Product	System	Mechanical	Electrical	Getting	Optimization	Doromotoro	Technical	Component	Diagnostics	UL
information	Introduction	Information	design	Installation	Installation	started	Optimization	Parameters	data	sizing	Diagnostics	Information

Where varistors other than those listed in Table 3-22 are fitted branch circuit protection may be required, where this is the case, follow the manufacturers recommendations.

NOTE

VDR1, VDR2 and VDR3 when operating with a 690 Vac supply should consist of two varistors each in series as detailed in Table 3-22 on page 38.

NOTE

To prevent inductive voltage spikes surge suppressors should be fitted to the contactor coils.

NOTE

The Regen inductor core losses are directly dependent on the switching frequency and specific core material and therefore selection is critical. As a result only Regen inductors specified in this guide should be used.

NOTE

SFF branch circuit protection may be required, refer to section 3.9.3 Switching frequency filter capacitor on page 30.

Safety Product System design Mechanical Electrical Getting Technical Component UL Introduction Optimization Parameters Diagnostics information Information Installation Installation started data sizing Information

4.4.2 Single Regen, multiple motoring system using a Unidrive M Rectifier to support up to 2 % THD,

Figure 4-10 Power connections: Single Regen, multiple motoring system

Table 4-7 Key to Figure 4-10

Table 4-7 Key t	o Figure 4-10
Key	Description
L1, L2, L3	Three phase supply
F1, F2, F3	Main Regen system supply fuses
VDR1, VDR2, VDR3	Varistor network line-to-line
VDR4, VDR5, VDR6	Varistor network line-to-ground
F7, F8, F9, F10	DC bus fusing to motoring drive
F11, F12	DC bus fusing to Regen drive
F13, F14	Rectifier DC fuse protection
EMC	Optional EMC filter
C1	Switching frequency filter capacitor
L1	Switching frequency filter inductor
L2	Regen inductor
K1	Main supply contactor
K2	Regen drive main contactor
K3	Charging contactor
Aux.2a	K2 NO auxiliary contact
Aux.2b	K2 NC auxiliary contact
Aux.3	K3 NC auxiliary contact
Rly.1	Optional isolation for enable between Regen and motoring drive(s)
Mt.1	Motor thermistor 1
Mt.2	Motor thermistor 2
Tc.1	Regen inductor thermistor
+DC, -DC	Motoring drive power connection to Regen drive
S1	Regen drive enable
S2	Motoring drive enable
S3	Motoring drive reset
S4	Motoring drive run forward
S5	Motoring drive run reverse
S6	Regen drive reset input (Pr 08.024 = Pr 10.033)
Vsupply	System control supply
F15, F16, F17	Optional switching frequency filter capacitor fuses

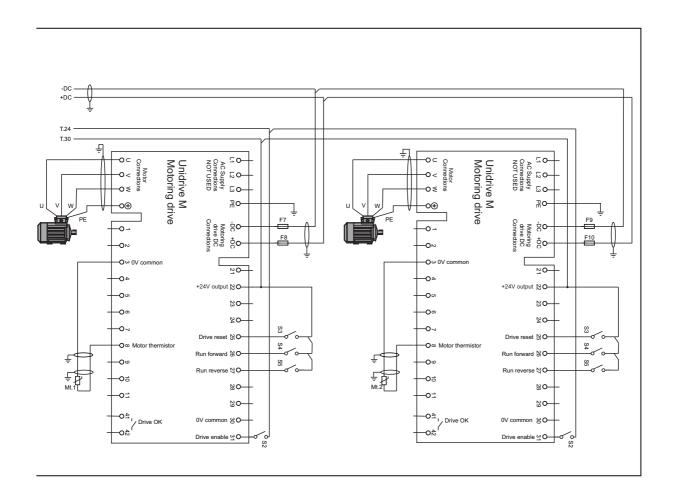
^{*} Unidrive M Frame 11 and all new generation Inductors only.

Figure 4-10 shows both the power and control connections for the multiple motoring Regen solution. For the multiple motoring system an external charging circuit is required due to the additional capacitance from the multiple motoring drives. The external charging circuit is interlocked with the Regen drive enable to prevent operation with this circuit still connected.

In this example, the external charging circuit consists of a Unidrive M Rectifier module. Refer to section 3.5 *Unidrive M Rectifier* on page 23 for further details of the Unidrive M Rectifier.

NOTE

For the multiple motoring drive solution, the Regen drive and associated Unidrive M Rectifier must be sized to the total power requirements of all motoring drives..



Regen inductor thermistor must be configured to disable the drive in the event of a thermal overload. The switching frequency filter inductor thermistor must be configured to open the main supply contactor in the event of a thermal overload. This can be achieved through the use of an external thermal protection device/relay.

NOTE

The rectifier uses the Regen inductor as line reactors. The rectifier may be powered from the incoming supply using a standard line reactor if required.

Safety	Introduction	Product	System	Mechanical	Electrical	Getting	Ontimization	Parameters	Technical	Component	Diagnostics	UL
information	Introduction	Information	design	Installation	Installation	started	Optimization	Farameters	data	sizing	Diagnostics	Information

Where varistors other than those listed in Table 3-22 are fitted branch circuit protection may be required, where this is the case, follow the manufacturers recommendations.

NOTE

DC bus fusing is required for all motoring drives in a single Regen, multiple drive system in both the +DC and -DC.

NOTE

VDR1, VDR2 and VDR3 when operating with a 690 Vac supply should consist of two varistors each in series as detailed in Table 3-22 on page 38.

NOTE

To prevent inductive voltage spikes surge suppressors should be fitted to the contactor coils.

NOTE

The Regen inductor core losses are directly dependant on the switching frequency and specific core material and therefore selection is critical. As a result only Regen inductors specified in this guide should be used.

NOTE

SFF branch circuit protection may be required, refer to section 3.9.3 Switching frequency filter capacitor on page 30.

See Chapter 10 Technical data on page 276 for fuse rating information.

	1						1			1		
Safetv		Product	System	Mechanical	Electrical	Gettina			Technical	Component		UL
	Introduction						Optimization	Parameters		oiniponon	Diagnostics	
information		Information	aesign	Installation	Installation	started	'		data	sizing	"	Information

4.4.3 Single Regen, multiple motoring system using an external softstart resistor to support up to 2 % THD_v

Figure 4-11 Power connections: Single Regen, multiple motoring system

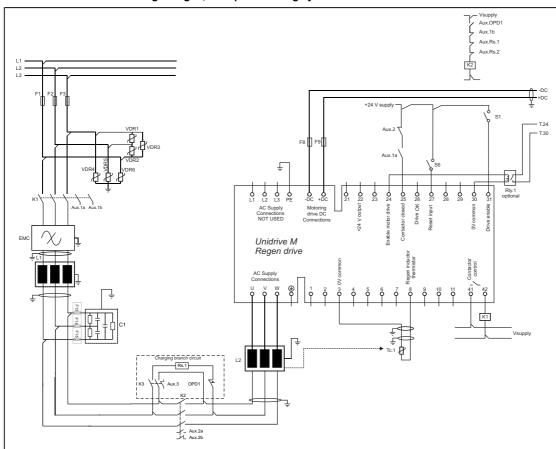


Table 4-8 Key to Figure 4-11

Table 4-8 Key to	
Key	Description
L1, L2, L3	Three phase supply
F1, F2, F3	Main Regen system supply fuses
VDR1, VDR2, VDR3	Varistor network line-to-line
VDR4, VDR5, VDR6	Varistor network line-to-ground
F4, F5, F6, F7	DC bus fusing to motoring drive
F8, F9	DC bus fusing to Regen drive
EMC	Optional EMC filter
C1	Switching frequency filter capacitor
L1	Switching frequency filter inductor
L2	Regen inductor
K1	Main supply contactor
K2	Pre-charge contactor
OPD1	Overload protection device for Rs.1
Aux.1a	K1 NO auxiliary contact
Aux.2	K2 NO auxiliary contact
Aux.1b	K1 NC auxiliary contact
Aux.OPD1	OPD1 NO auxiliary contact
Rly.1	Optional isolation for enable between Regen and motoring drive(s)
Mt.1	Motor thermistor 1
Mt.2	Motor thermistor 2
Tc.1	Regen inductor thermistor
Rs.1	Softstart resistor 1
+DC, -DC	Motoring drive power connection to Regen drive
S1	Regen drive enable
S2	Motoring drive enable
S3	Motoring drive reset
S4	Motoring drive run forward
S5	Motoring drive run reverse
S6	Regen drive reset input (Pr 08.024 = Pr 10.033)
Vsupply	System control supply
K3	Charging contactor
Aux.3	SFF capacitor auxiliary contact
F13, F14, F15	Optional switching frequency filter capacitor fuses
*******	4 1 11 11 11 11 1

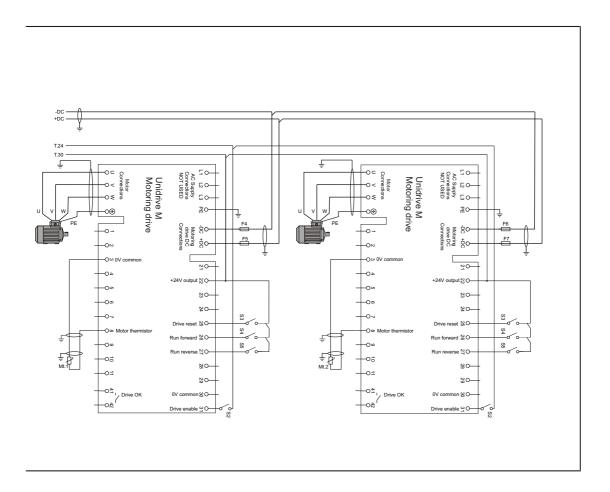
^{*} Unidrive M Frame 11 and all new generation Inductors only.

Figure 4-11 shows both the power and control connections for the multiple motoring Regen solution. For this multiple motoring system solution an external charging circuit is required due to the additional capacitance from the multiple motoring drives. The external charging circuit is interlocked with the Regen drive enable to prevent operation with this circuit still connected.

For sizing of the external charging circuit required for the multiple motoring drive system, refer to Chapter 11 *Component sizing* on page 308. For details on softstart resistors and protection refer to section 10.4.5 *Switching frequency filter capacitors* on page 299.

NOTE

For the multiple motoring drive solution, the Regen drive and associated external components must be sized to the total power requirements of all motoring drives.


NOTE

The Regen inductor core losses are directly dependant on the switching frequency and specific core material and therefore selection is critical. As a result only Regen inductors specified in this guide should be used.

Regen inductor thermistor must be configured to disable the drive in the event of a thermal overload. The switching frequency filter inductor thermistor must be configured to open the main supply contactor in the event of a thermal overload. This can be achieved through the use of an external thermal protection device/relay.

Safety	Introduction	Product	System	Mechanical	Electrical	Getting	Ontimization	Darameters	Technical	Component	Diagnostics	UL
information	Introduction	Information	design	Installation	Installation	started	Optimization	Parameters	data	sizing	Diagnostics	Information

Where varistors other than those listed in Table 3-22 are fitted branch circuit protection may be required, where this is the case, follow the manufacturers recommendations.

NOTE

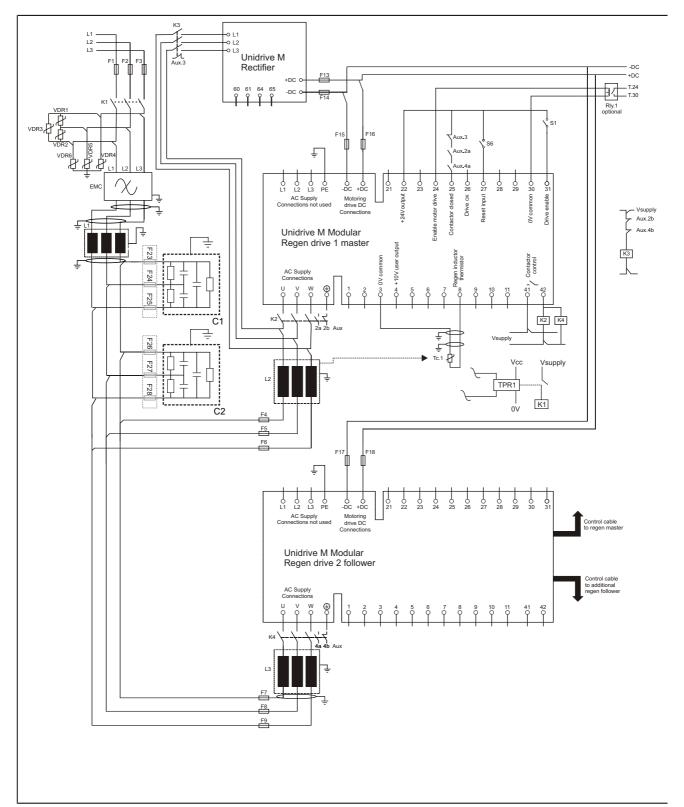
DC bus fusing is required for all motoring drives in a single Regen, multiple motoring drive system in both the +DC and -DC.

NOTE

VDR1, VDR2 and VDR3 when operating with a 690 Vac supply should consist of two varistors each in series as detailed in Table 3-22 on page 38.

NOTE

To prevent inductive voltage spikes surge suppressors should be fitted to the contactor coils.


See Chapter 10 Technical data on page 276 for fuse rating information.

NOTE

SFF branch circuit protection may be required, refer to section 3.9.3 Switching frequency filter capacitor on page 30.

4.4.4 Multiple Regen, multiple motoring using Unidrive M Rectifier to support up to 2 % THD_v

Figure 4-12 Power connections: Multiple Regen, multiple motoring system

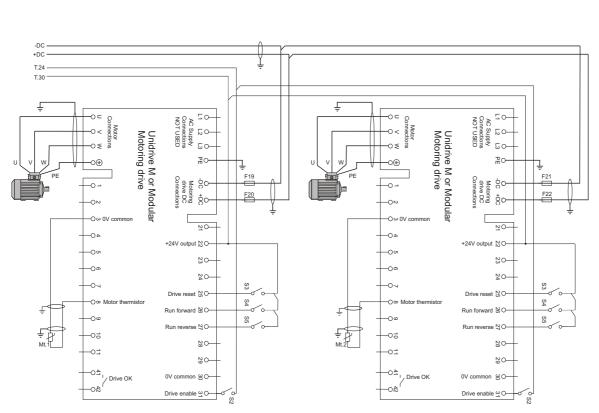


Table 4-9 Key to Figure 4-12

Key	Description
L1, L2, L3	Three phase supply
F1, F2, F3	Main Regen system supply AC fuses
F4, F5, F6	Regen drive 1 AC fuses
F7, F8, F9	Regen drive 2 AC fuses
F13, F14	DC Bus fusing to rectifier
F15, F16, F17, F18	DC Bus fusing to Regen drives
F19, F20, F21, F22	DC Bus fusing to motoring drive
VDR1, 2, 3	Varistor network line-to-line
VDR4, 5, 6	Varistor network line-to-ground
EMC	Optional EMC filter
L1	Switching frequency filter inductor
L2	Regen inductor (Regen 1)
L3	Regen inductor (Regen 2)
C1	Switching frequency filter capacitor (Regen 1)
C2	Switching frequency filter capacitor (Regen 1)
K1	Main supply contactor
K2	Regen drive 1 main contactor
K3	Charging contactor
K4	Regen drive 2 main contactor
Aux.2	OPD2 NO auxiliary contact
Aux.2a	K2 NO auxiliary contact Regen 1

Key	Description
Aux.2b	K2 NC auxiliary contact Regen 1
Aux.2c	K2 NC auxiliary contact Regen 1
Aux.3	K3 NC auxiliary contact
Aux.4a	K4 NO auxiliary contact Regen 2
Aux.4b	K4 NC auxiliary contact Regen 2
Aux.4c	K4 NC auxiliary contact Regen 2
Rly.1	Optional isolation for enable between Regen and motoring drive(s)
Mt.1	Motor thermistor 1
Mt.2	Motor thermistor 2
Tc.1	Regen inductor thermistor
+DC, -DC	Motoring drive power connection to Regen drive
S1	Regen drive enable
S2	Motoring drive enable
S3	Motoring drive reset
S4	Motoring drive run forward
S5	Motoring drive run reverse
S6	Regen drive reset (user programmed)
TPR1	Thermal protection relay
Vsupply	System control supply
F23, F24, F25, F26, F27, F28	Optional switching frequency filter capacitor fuses

^{*} Unidrive M Frame 11 and all new generation inductors only.

Regen inductor thermistor must be configured to disable the drive in the event of a thermal overload. The switching frequency filter inductor thermistor must be configured to open the main supply contactor in the event of a thermal overload. This can be achieved through the use of an external thermal protection device/relay.

Safety	Introduction	Product	System	Mechanical	Electrical	Getting	Optimization	Parameters	Technical	Component	Diagnostics	UL
information	Introduction	Information	design	Installation	Installation	started	Optimization	Farameters	data	sizing	Diagnostics	Information

Where varistors other than those listed in Table 3-22 are fitted branch circuit protection may be required, where this is the case, follow the manufacturers recommendations.

NOTE

For the multiple motoring drive solution, the Regen drive and associated external components must be sized to the total power requirements of all motoring drives.

NOTE

The Regen inductor core losses are directly dependant on the switching frequency and specific core material and therefore selection is critical. As a result only Regen inductors specified in this guide should be used.

NOTE

VDR1, VDR2 and VDR3 when operating with a 690 Vac supply should consist of two varistors each in series as detailed in Table 3-22 on page 38.

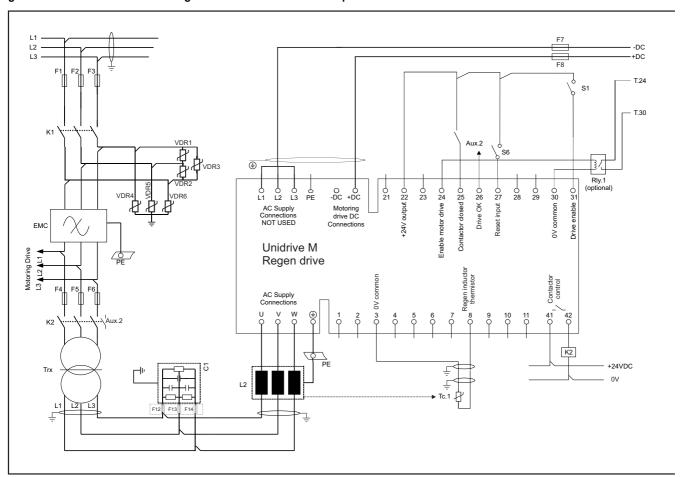
NOTE

To prevent inductive voltage spikes surge suppressors should be fitted to the contactor coils.

NOTE

Multiple switching frequency filter inductors and EMC filters are permissible.

NOTE


SFF branch circuit protection may be required, refer to section 3.9.3 Switching frequency filter capacitor on page 30.

Safety	Introduction	Product	System	Mechanical	Electrical	Getting	Optimization	Parameters	Technical	Component	Diagnostics	UL
information	madadadi	Information	design	Installation	Installation	started	Optimization	1 didiliotoro	data	sizing	Diagnootioo	Information

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information	ı
--------------------	--------------	------------------------	---------------	----------------------------	----------------------------	-----------------	--------------	------------	----------------	------------------	-------------	-------------------	---

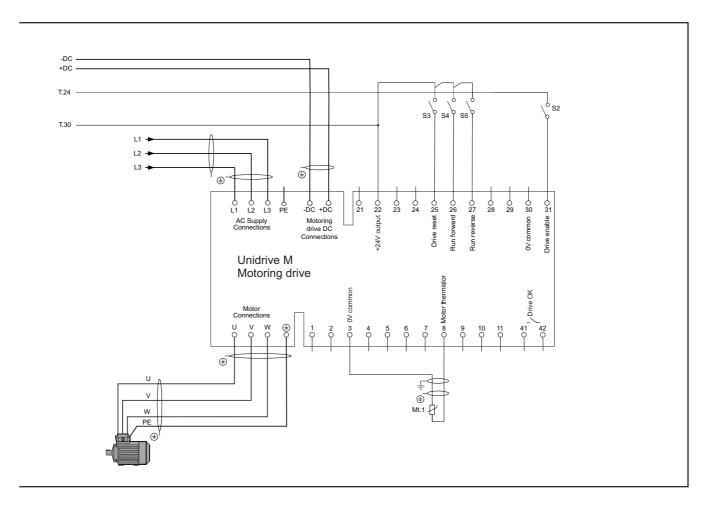

4.4.5 Brake resistor replacement to support up to 2 % THD_v

Figure 4-13 Power connections: Regen drive as a brake resistor replacement

Table 4-10 Key to Figure 4-8	
Key	Description
L1, L2, L3	Three phase supply
F1, F2, F3	Main Regen system supply fuses
F4, F5, F6	Regen drive fusing
F7, F8	DC Fusing (see Note)
VDR1, VDR2, VDR3	Varistor network line-to-line 550 Vac
VDR4, VDR5, VDR6	Varistor network line-to-ground 680 Vac
EMC	EMC Filter
C1	Switching frequency filter capacitor
L2	Regen inductor
K1	Main supply switch or contactor
K2	Regen drive main contactor
Trx	Isolating transformer
Aux.2	Regen drive main contactor auxiliary
Rly.1	Optional isolation for enable between Regen and motoring drive(s)
Mt.1	Motor thermistor
Tc.1	Regen inductor thermistor
+DC, -DC	Motoring drive power connection to Regen drive
S1	Regen drive enable
S2	Motoring drive enable
S3	Motoring drive reset
S4	Motoring drive run forward
S5	Motoring drive run reverse
S6	Regen drive reset input (Pr 08.024 = Pr 10.033)
F12, F13, F14	Optional switching frequency filter capacitor fuses

In many applications, the motoring power can be significantly higher than the braking power. If sinusoidal input currents are not required, it is difficult to justify the cost of a Regen drive rated at the full motoring power. In these applications it may be desirable to take the lower cost option of a smaller Regen drive which is only used to return the braking energy to the AC supply. When a Regen drive is used as a dynamic brake resistor replacement, connections must be made as shown in Figure 4-13.

NOTE

Where varistors other than those listed in Table 3-22 are fitted branch circuit protection may be required, where this is the case, follow the manufacturers recommendations.

NOTE

DC bus fusing is required where the Regen drive is smaller than the motoring drives. See Chapter 10 *Technical data* on page 276 for fuse rating information.

NOTE

For the multiple motoring drive solution, the Regen drive and associated external components must be sized to the total power requirements of all motoring drives.

NOTE

The Regen inductor core losses are directly dependant on the switching frequency and specific core material and therefore selection is critical. As a result only Regen inductors specified in this guide should be used.

NOTE

To prevent inductive voltage spikes surge suppressors should be fitted to the contactor coils.

NOTE

SFF branch circuit protection may be required, refer to section 3.9.3 Switching frequency filter capacitor on page 30.

The Isolating transformer, Trx, can be prone to thermal overload. Ensure that thermal overload protection is fitted.

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
--------------------	--------------	---------------------	---------------	----------------------------	----------------------------	--------------------	--------------	------------	----------------	------------------	-------------	-------------------

4.4.6 Regen and motoring drive ratings - brake resistor replacement

NOTE

The Regen drive's current limits are detailed in section 3.3 Ratings on page 17.

In general the Regen drive must be rated at a power greater than, or equal to, the maximum braking power.

Example

Two 30 kW motoring drives are each driving 30 kW motors. The load is such that only one drive is braking at a time.

If each motor supplies between 20 and 30 kW motoring, and the braking power varies from 0 to 30 kW, the maximum total braking power is 30 - 20 = 10 kW, which is what the Regen drive should be rated for.

In drive configurations where the motoring drive power rating is several times the expected braking power, it is necessary to consider the peak braking power returned from the load.

Example:

The motoring drive is a 75 kW Unidrive M. Motoring power is 75 kW. Steady state braking power is 20 kW.

From these figures, it may appear that a 22 kW Regen drive will provide sufficient braking power. However, dynamically the peak braking power could be much greater. If the 75 kW drive current limits are set at 175 % for motoring and braking (default settings), the peak brake power could be:

 $\sqrt{3}$ x 157 A x 400 V x 175 % = 190.4 kW

This is much greater than the 22 kW Regen drive is able to return to the supply, hence a larger drive is required.

NOTE

If the Regen drive is not rated for the required braking power, then the drives will trip on DC bus over-voltage.

It is not possible to use the Combi filter solution in a braking resistor replacement system.

When using the Regen drive as a braking resistor replacement, the Regen input must have an isolating transformer installed so that the Regen drive input can float with respect to ground.

The Combi filter combines the switching frequency filter and EMC filter into one item. A significant part of an EMC filter are the capacitors between line and ground.

The result of placing a Combi filter in circuit between the Regen drive and isolating transformer is that the ground connection to the Combi filter prevents the Regen drive input from floating and damage to the system will occur.

4.4.7 Isolating transformer and diode - brake resistor replacement

There are three main connection differences compared with normal operation.

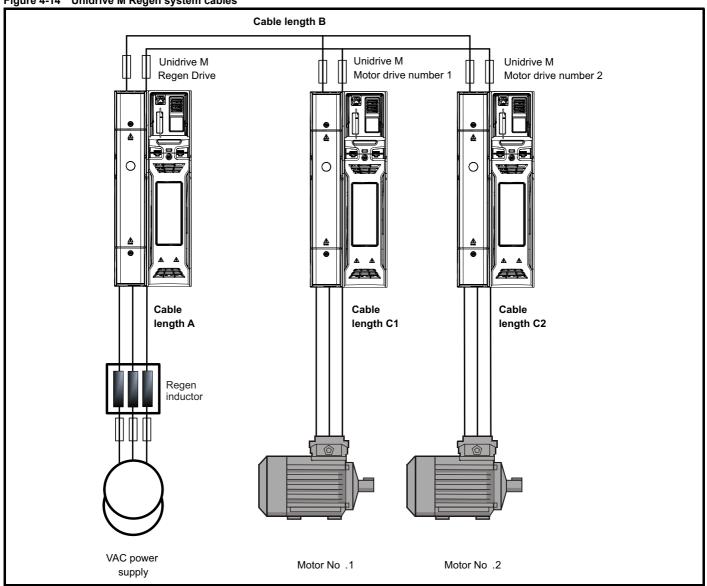
- There are AC supply connections to both the Regen and motoring drives.
- The DC bus connection between the Regen and motoring drives is via the rectifier diodes shorting the line input connectors (L1, L2 and L3) and connecting them to the –DC connection (as detailed in figure 4-5) ensures that power flows from the motoring drive to the regen drive only.
- The switching frequency filter inductors are replaced with an isolating transformer Trx with a leakage inductance ≥ 4 %.

Isolating transformer Trx

This is a three phase transformer which provides isolation between the AC supply and the Regen drive. One isolating transformer can only supply one Regen drive with the current rating equal to the Regen drive continuous current rating. The transformers leakage inductance forms the switching frequency filter inductance. The optimum inductance value is specified in section 10.4.5 *Switching frequency filter capacitors* on page 299, any value equaling or exceeding this by up to 100 % is acceptable. The required reactance is 4 % and a standard transformer has a reactance in the range 4 % to 6 %. It should not be necessary to specify a special transformer for this purpose.

NOTE

A non isolating transformer should not be used under any circumstances.


Safety	Introduction	Product	System	Mechanical	Electrical	Getting	Optimization	Parameters	Technical	Component	Diagnostics	UL
information		Information	design	Installation	Installation	started	opza.io		data	sizing	Diag.ioo.ioo	Information

4.5 Cable lengths

Since capacitance in the cabling causes loading, the Regen/motoring system cable length should not exceed the values given in Table 4-11 to Table 4-14 Regen system maximum cable lengths, without the addition of extra components.

To determine cable length, the Regen/motoring system should be considered as a number of sections as detailed in Figure 4-14 and the description below

Figure 4-14 Unidrive M Regen system cables

Cable length A is the Vac cable situated between the Regen inductor and the Regen drives power terminals, U, V and W. In general no special precautions are necessary for the AC supply wiring to the Regen drive however it should be noted the high frequency PWM is present here. Ideally the Regen inductor should be mounted close to the Regen drive terminals. If a cable length longer than 5 m is used, a shielded cable with the grounded shield should be used. Where the Regen inductor is situated close to the Regen drive, **Cable length A** need not be considered when calculating the total cable length.

Cable length B is the length of the DC bus connection between the Regen drive and motoring drive(s). The common +/- DC bus connections between all drives should be treated as a single two core cable when calculating the length, and not two individual cables lengths. The DC power output from the Unidrive M Regen drive which is used as the input stage to the Motoring drive(s) carries a common-mode high frequency voltage comparable with the output voltage from a standard drive. All precautions recommended for motor cables must also be applied to all cables connected to this DC circuit, cable length, shield, grounding and segregation.

Cable length C (C1 and C2) is the total AC cable length between all Motoring drive(s) and their motors. Figure 4-14 shows a Regen system and the cable connections A, B and C1 + C2.

Therefore the cable length for the Regen system will be, Total cable length = Cable length B + Cable length C1 + Cable length C2.

The total system cable length for the Regen system should be compared with the maximum cable length listed for the Regen drive in Table 4-11 to Table 4-14, if the total system cable length exceeds this value additional measures will be required, refer to section 4.6 *Exceeding maximum cable length* on page 70.

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
--------------------	--------------	---------------------	---------------	----------------------------	----------------------------	--------------------	--------------	------------	----------------	------------------	-------------	-------------------

The sum total length of the DC bus and motor cables (B and C in Figure 4-14) should not exceed the values shown in the tables below:

Table 4-11 200 V Regen system maximum cable lengths

			200 V Nominal A	C supply voltage				
Madal			Maximum permis	sible cable length				
Model			Motoring drive sw	vitching frequency				
	3 kHz	4 kHz	6 kHz	8 kHz	12 kHz	16 kHz		
03200050		65 m	(210 ft)	•				
03200066		100 m (330 ft)			1			
03200080	130 m	(425 ft)						
03200106			1					
04200137				75 m (245 ft)	50 m (165 ft)	37 m (120 ft)		
04200185	200 (000 #)	150 m (490 ft)	100 m (330 ft)	75 m (245 ft)				
05200250	200 m (660 ft)							
06200330								
06200440								
07200610								
07200750								
07200830								
08201160								
08201320	250 m (820 ft)	187 m (614 ft)	125 m (410 ft)	93 m (305 ft)	62 m (203 ft)	46 m (151 ft)		
09201760								
09202190								
10202830								
10203000								

Table 4-12 400 V Regen system maximum cable lengths

			400 V Nominal A	AC supply voltage				
Model			Maximum permis	ssible cable length				
Wodei			Motoring drive sv	witching frequency				
	3 kHz	4 kHz	6 kHz	8 kHz	12 kHz	16 kHz		
03400025			(210 ft)					
03400031		100 m (330 ft)						
03400045	130 m	(425 ft)						
03400062								
03400078								
03400100								
04400150				75 m (245 ft)	50 m (165 ft)	37 m (120 ft		
04400172	200 m (660 ft)	150 m (490 ft)	100 m (330 ft)	75111 (24511)				
05400270	200 111 (000 11)	130 111 (490 11)						
05400300								
06400350								
06400420								
06400470								
07400660								
07400770								
07401000								
08401340								
08401570					62 m (203 ft)	46 m (151 ft		
09402000	250 m (820 ft)	187 m (614 ft)	125 m (410 ft)	93 m (305 ft)				
09402240	230 111 (020 11)	107 111 (014 11)	123 111 (4 10 11)	93 III (303 II)				
10402700								
10403200								
11403770								
11404170								
11404640								

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
--------------------	--------------	---------------------	---------------	----------------------------	----------------------------	--------------------	--------------	------------	-------------------	------------------	-------------	-------------------

Table 4-13 575 V Regen system maximum cable length

			575 V Nominal AC	supply voltage		
Model			Maximum permiss	ible cable length		
WIOGEI			Motoring drive swit	tching frequency		
	3 kHz	4 kHz	6 kHz	8 kHz	12 kHz	16 kHz
05500030						
05500040						
05500069						
06500100		150 m (490 ft)	100 m (330 ft)			
06500150	200 m (660 ft)			75 m (245 ft)	50 m (165 ft)	37 m (120 ft)
06500190						
06500230						
06500290						
06500350						
07500440						
07500550						
08500630						
08500860			125 m (410 ft)	93 m (305 ft)	62 m (203 ft)	46 m (151 ft)
09501040			125 111 (4 10 11)	93 111 (303 11)	62 111 (203 11)	40 111 (151 11)
09501310	250 m (820 ft)	187 m (614 ft)				
10501520	,					
10501900						
11502000				•		
11502540						
11502850	7					

Table 4-14 690 V Regen system maximum cable length

			690 V Nominal AC	supply voltage		
Model			Maximum permiss	ible cable length		
wodei			Motoring drive swit	tching frequency		
	3 kHz	4 kHz	6 kHz	8 kHz	12 kHz	16 kHz
07600190						
07600240						
07600290						
07600380						
07600440						
07600540	1		125 m (410 ft)	02 m (205 ft)	62 m (202 ft)	46 m (151 ft
08600630				93 m (305 ft)	62 m (203 ft)	46 m (151 ft
08600860	250 m (820 ft)	187 m (614 ft)				
09601040						
09601310						
10601500						
10601780						
11602100				•	1	1
11602380						
11602630	7					

If the cable length in the above tables are exceeded, additional components are required. Refer to section 4.6.1 *Available preventative measures* on page 72.

4.5.1 Cable type

Use 105 °C (221 °F) (UL 60/75 °C temp rise) PVC-insulated cable with copper conductors having a suitable voltage rating, for the following power connections:

- AC supply to external EMC filter (when used)
- AC supply (or external EMC filter) to Regen drive
- Regen drive to motoring drive (or busbar arrangement could be used)
- Motoring drive to motor

Safety	Introduction	Product	System	Mechanical	Electrical	Getting	Optimization	Parameters	Technical	Component	Diagnostics	UL
information		Information	design	Installation	Installation	started	l '		data	sizing	Ŭ	Information

4.6 Exceeding maximum cable length

If the maximum cable length specified is exceeded, the increased circulating currents caused by the extra cable capacitance will have an effect on the other parts of the system. This will necessitate additional components to be added to the standard arrangement. Refer to section 4.6.1 *Available preventative measures* on page 72.

When the maximum Regen system cable length is exceeded the effect of the additional capacitance of this cable to ground can become significant. At every switching edge the capacitance must be charged and subsequently discharged on the falling edge. This leads to a capacitive high frequency current flowing in the common mode, i.e. returning through the ground connections, which must be supported by the EMC filter, inverter output and for a Regen system the Regen inductor.

This charging current is sensed by the drive current sensing circuit and may affect the drive current control system or protection, causing a loss of torque or over-current trip. It may also have heating effects on the EMC filter and Regen inductor.

The effect of the charging current on the standard inverter can be managed by connecting an inductor in series with the output, and where necessary additional filter capacitors between the DC bus and ground. For a Regen system the inductor is effectively already present in the system, the Regen inductor, and capacitance to ground at the DC bus is not permitted because of the PWM action of the Regen input stage.

When operating with a Unidrive M Regen system with a total system cable length that exceeds the maximum cable lengths listed in Table 4-11 to Table 4-14 the following considerations must be made:

- 1. Exceeding the maximum allowed cable lengths in a Unidrive M Regen system can result in both heating of the Regen inductor and also heating and saturation of the EMC filter if fitted due to the increased common mode currents.
- 2. Cable types should also be considered along with the increased losses generated in the long cable application, these can be calculated for the given cable type and length to ensure these do not exceed the rating of the Regen inductor.

Cable types should be considered with the long cable applications due to the increased losses generated with certain cable types. The absolute maximum allowable cable length (cable length allowed with long cable modifications) can be limited if high capacitance cables are used. The high capacitance cables result in increased cable-induced losses which can exceed the Regen inductor rating. Most cables have an insulating jacket between the cores and the armor or shield; these cables have a low capacitance and are recommended. Cables that do not have an insulating jacket tend to have high capacitance; if a cable of this type is used the absolute maximum cable length could be limited. (Figure 4-14 shows two types of cables). Typical cable capacitance for a shielded cable containing four cores is 130 pF/m (i.e. from one core to all others and the shield connected together).

Figure 4-15 Cable construction influencing the capacitance

Normal capacitance Shield or armour separated from the cores

High capacitance Shield or armour close to the cores

Long cable lengths if routed through a plant can be a source for radiated emissions due to the PWM present on all three cables sections A, B and C. Refer to Figure 4-14, Unidrive M Regen system cables. In addition there can be increased common mode currents due to the increased cable length and capacitance. The correct choice of screened cable and cable segregation should be followed.

NOTE

The absolute maximum cable length achievable for the Regen system will be limited by the increased losses and the rating of the Regen inductor. Excessive cable lengths will result in unacceptable losses in the Regen inductor.

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
			•									

The increased cable losses generated due to the long cable lengths can be calculated and compared with a threshold for the Regen inductor using the calculations below (the loss should not exceed 0.1 of the VA in the Regen inductor):

Regen system, long cable calculations

	tem, long cable calculations	
	Estimate cable capacitances - from all cores to ground. If no data is available the following typical values can be used: multi-core cables, and screened/armoured cables where there is a plastic sheath between the phases and the screen:	
	300 pF/m.	
	Screened cables with no plastic sheath between cores and screen, mineral insulated cables: 600pF/m	C_{DC}
1	Note bus bars using mainly air insulation have negligible capacitance.	C_{DC} C_{COP}
	$C_{\it DC}$ = total capacitance of DC link cable(s)	C_{COP}
	= total capacitance of DC link cable(s)	
	C_{COP} = total capacitance of all motor cables	
	Add an allowance for system motor capacitances. This depends on the motor size, but we suggest a value of 1 nF per	
	motor is a reasonable estimate. This will usually be rather smaller than the cable capacitance. For unusual motors such	
	as those with very high pole numbers, the capacitance may be much higher and it is worth trying to get the actual data.	
2	C	C_{OP}
	Add the total motor capacitance to $C_{\it COP}$	- OP
	C	
	to obtain the total output capacitance ${\cal C}_{\it OP}$	
	The cable capacitances cause additional high-frequency losses which are mainly dissipated in the Regen inductor.	
	The loss can be estimated from the following expression:	
	C^{-2}	
	$P = 0.27V_{DC}^{2} \left[f_{s1} (C_{DC} + C_{OP}) + f_{s2} \frac{C_{OP}^{2}}{C_{DC} + C_{OP}} \right]$	
	$\begin{bmatrix} c_{DC} + C_{OP} \end{bmatrix}$	
	where	
	$\int_{s_1} \int_{s_2} f_{s_2}$	
	are the switching frequencies of the Regen and motor inverters respectively.	
	For the common situation where	
3	is small compared with	Р
3	C_{DC} C_{COP}	Ρ
	, this expression simplifies to:	
	$P = 0.27V_{DC}^{2}C_{OP}[f_{s1} + f_{s2}]$	
	Note that this expression is intended as a worst-case estimate of the loss. It is exactly correct for a single motor drive.	
	Where large numbers of motor drives are connected to a single Regen inverter it gives an over-estimate because the	
	high-frequency currents caused by the drives have effectively random relative phase angles and tend to cancel.	
	This reduces the term in the expression. It is difficult to calculate this situation with any certainty so it is recommended that	
	the above expressions should be used unless the number of motors connected to a single Regen inverter exceeds 10.	
	For over 10 motors the alternative expression can be used with confidence:	
	$P = 0.27 V_{DC}^{2} C_{OP} f_{s1}$	
	Estimate whether the Regen inductor is able to tolerate these losses, which will appear primarily as additional iron loss. This is a difficult judgement since it depends on the closeness of its operating temperature to its material limits. For the	
	standard inductors recommended by Control Techniques the following guideline can be applied:	
	The loss should not exceed 0.1 of the VA in the Regen inductor	
	$P \leq 0.2\pi f_1 L I_{nchk}^2$	
4		
4	where	
	f_I = Input supply frequency	
	I_{nchk} = Regen inductor nominal rated current	
	L = Regen inductance	
5	If the loss exceeds this limit, the following measures should be considered: Reduce switching frequency	

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
--------------------	--------------	---------------------	---------------	----------------------------	----------------------------	--------------------	--------------	------------	----------------	------------------	-------------	-------------------

Busbar connections which are common in Regen drive system cubicles are normally of short lengths and have minimal capacitive effects to ground therefore power loss does not need to be taken into consideration.

NOTE

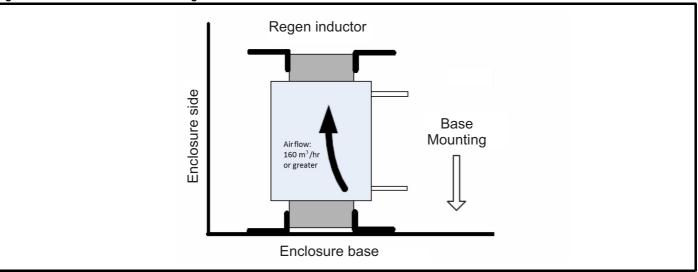
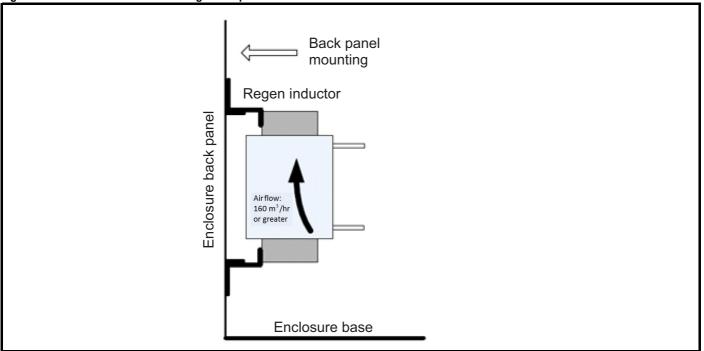
For Regen applications which have multiple motoring drives and therefore multiple motor cable lengths consideration should be made to the routing of these cables, e.g. bunched, separate cable trays or layered as this can affect the final cable rating.

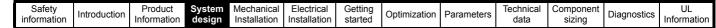
4.6.1 Available preventative measures

1. Regen inductor forced cooling

If the maximum cable length specified for a Regen system is exceeded this will introduce heating of the Regen inductor due to the increased common mode currents. To overcome the additional heating of the Regen inductor, forced cooling should be provided into the system as specified to provide an airflow of at least 160 m³ / hr or greater. The forced cooling should be configured as shown in Figure 4-16 and Figure 4-17.

Figure 4-16 Location of forced cooling - base mounted inductor

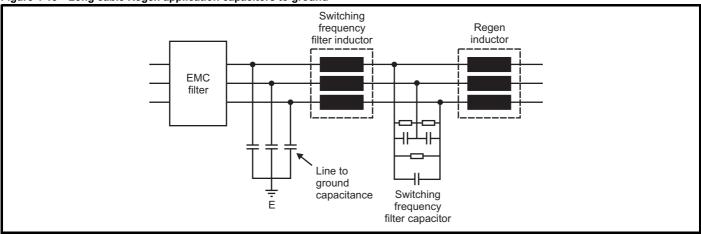

Figure 4-17 Location of forced cooling - back panel mounted inductor

2. Capacitors line to ground to support EMC filter

When using an EMC filter, a switching frequency filter must also be used to protect the EMC filter from overload.

Ground leakage current

The value of capacitance required means that the ground leakage current exceeds the usual safety limit of 3.5 mA. The user should be aware of the high leakage current. A permanent fixed ground connection must be provided to the system.


Discharge time

Resistors must be fitted in parallel with the capacitors to ensure that they discharge when the supply is removed. The resistor values should be chosen so that the discharge time is no longer than for the drive itself. Typically values of about 5 M Ω are suitable, and are high enough not to cause the system to fail a simple insulation test.

When an EMC filter is used in a Unidrive M Regen system with long cables the increased common mode currents can result in both heating and saturation of the EMC filter. As a result of this additional capacitors are required line to ground when the maximum cable length is exceeded.

To prevent heating, saturation and damage to the EMC filter the capacitance line to ground should be implemented as shown in Figure 4-17. Whether or not an EMC filter is required is dependent upon the user requirements and local compliance.

Figure 4-18 Long cable Regen application capacitors to ground

Selection of line to ground capacitors for Regen systems with long cables, in order to select the appropriate capacitors, the rms value of the current line to ground, the AC supply voltage and minimum capacitance values are required. The current rating of the capacitors should be at a high frequency such as 100 kHz at the relevant supply voltage. Polypropylene type capacitors (x type) are the most suitable because of their low loss at high frequency.

A minimum capacitance value of 1 μ F per phase should be used with the final capacitance value being determined by the level of current line to ground. In practice, to carry the required level of current the capacitor will generally have a higher capacitive value. Multiple parallel capacitors can be used if convenient.

The rms value of the current can be estimated from the following formula: I_{rms} = 8.28 x 10⁻⁶ x K x V x $\sqrt{(\Sigma Ifs)}$

Where:

K is 1 for √2 for Regen systems

V is the DC Bus voltage

ΣIfs is the sum of the products of motor cable lengths and switching frequency of all drives in the system, including in the case of Regen systems the Regen drive with the total DC bus cable length

I is the total cable length in metre's

fs is the switching frequency

If all drives are operating at 3 kHz then the expression can be simplified to

$$I_{rms}$$
 = 4.85 x 10⁻⁴ x K x V x \sqrt{I}

Example

A Unidrive M Regen system operating with a power supply of 400 Vac providing a DC Bus of 700 Vdc at 3 kHz switching frequency with a total cable length of 1,000 m (cable lengths including A + B +C) the capacitor I_{rms} current can be calculated as follows

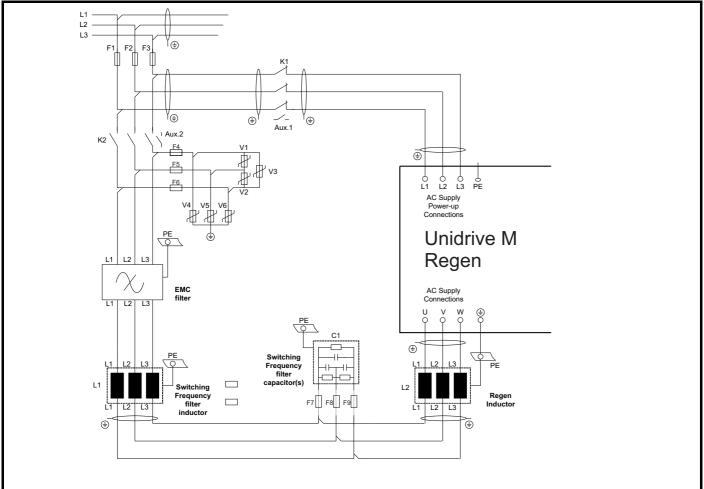
$$I_{rms} = 4.85 \times 10^{-4} \times K \times V \times \sqrt{I}$$

$$I_{rms} = 4.85 \times 10^{-4} \times \sqrt{2} \times 700 \times \sqrt{1000}$$

$$I_{rms} = 15.2 A$$

Select a Polypropylene X type capacitor at 15.2 A with a current rating at 100 kHz and > 1 uF

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
--------------------	--------------	---------------------	---------------	----------------------------	----------------------------	-----------------	--------------	------------	----------------	------------------	-------------	-------------------

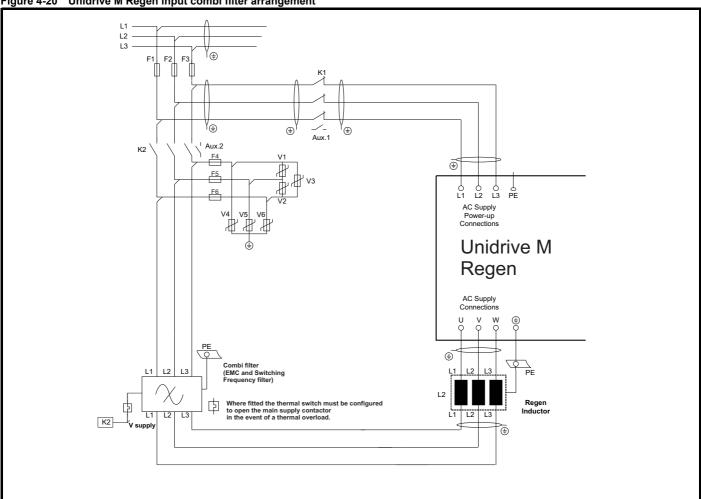

4.7 Regen input filter configuration

The Unidrive M input stage filtering arrangement consists of multiple components including an EMC filter and switching frequency filter (SFF). The SFF is made up from a switching frequency filter inductor and capacitor(s). The standard Regen input filtering configuration consists of separate EMC and SFF filter components, a more compact solution is available that combines both the EMC filter and switching frequency filter components into a single package. The combined filter can simplify installation and provide a compact Regen solution.

4.7.1 Standard Regen input filter

The standard Unidrive M Regen solution requires both an EMC filter and a switching frequency filter which comprises an inductor and capacitor(s). The following diagram shows the standard arrangement. When referring to the switching frequency filter capacitance, this can consist of either a single 3 phase capacitor or dual 3 phase capacitors.

Figure 4-19 Standard Unidrive M Regen input filter arrangement



Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
--------------------	--------------	---------------------	---------------	----------------------------	----------------------------	--------------------	--------------	------------	----------------	------------------	-------------	-------------------

4.7.2 Combined Regen input filters (combi filter)

The combi filter is a simplified solution consisting of a combined EMC filter and switching frequency filter. The combined filter is shown in the power configuration below (single Regen Unidrive M).

Figure 4-20 Unidrive M Regen input combi filter arrangement

The combi filter combines the standard EMC filter, SFF capacitor(s) and SFF inductor into a single package. With the combi filter the Regen system front end has a total of 2 major components (Regen inductor + Combi filter) where as previously this would have required 4 components (Regen inductor + SFF capacitor(s) + SFF inductor + EMC filter).

NOTE

The range of combi filters covered in this section are available from Schaffner, the filters are not stocked by the supplier of the drive.

Combi filters listed in Table 3-23 Combi filter selection on page 39 are equipped with an internal thermal switch to prevent the EMC filter inductor from overheating. The thermal switch must be configured to open the main supply contactor in the event of a thermal overload.

Safety Product System Electrical Getting Technical UL Mechanical Component Introduction Optimization Parameters Diagnostics information Information design Installation started sizing Information data

5 Mechanical Installation

This chapter describes the installation of the Regen drive components. Key features of this chapter include:

- · Regen component dimensions
- Enclosure sizing and layout
- · Enclosure ventilation
- Enclosure design with high ambient temperatures

Refer to the *Mechanical Installation sections* in the relevant *Unidrive M Power Installation Guide* for drive mechanical information.

5.1 Safety information

Follow the instructions

The mechanical and electrical installation instructions must be adhered to. Any questions or doubt should be referred to the supplier of the equipment. It is the responsibility of the owner or user to ensure that the installation of the drive and any external option unit, and the way in which they are operated and maintained, comply with the requirements of the Health and Safety at Work Act in the United Kingdom or applicable legislation and regulations and codes of practice in the country in which the equipment is used.

Competence of the installer

The drive must be installed by professional assemblers who are familiar with the requirements for safety and EMC. The assembler is responsible for ensuring that the end product or system complies with all the relevant laws in the country where it is to be used.

Enclosure

The drive is intended to be mounted in an enclosure which prevents access except by trained and authorized personnel, and which prevents the ingress of contamination. It is designed for use in an environment classified as pollution degree 2 in accordance with IEC 60664-1. This means that only dry, non-conducting contamination is acceptable.

5.2 Planning the installation

The following considerations must be made when planning the installation:

5.2.1 Access

Access must be restricted to authorised personnel only. Safety regulations which apply at the place of use must be complied with.

The IP (Ingress Protection) rating of the drive is installation dependent. For further information, please refer to the relevant *Unidrive M Power Installation Guide*.

5.2.2 Environmental protection

The drive must be protected from:

- moisture, including dripping water or spraying water and condensation. An anti-condensation heater may be required, which must be switched off when the drive is running.
- · contamination with electrically conductive material.
- contamination with any form of dust which may restrict the fan, or impair airflow over various components.
- · temperature beyond the specified operating and storage ranges.

NOTE

During installation it is recommended that the vents on the drive are covered to prevent debris (e.g. wire off-cuts) from entering the drive.

5.2.3 Cooling

The heat produced by the drive / additional components must be removed without its specified operating temperature being exceeded. Note that a sealed enclosure gives much reduced cooling compared with a ventilated one, and may need to be larger and/or use internal air circulating fans.

For further information, please refer to section 5.5.2 *Enclosure sizing* on page 102.

NOTE

Through hole mounting is possible for all Unidrive M modules and the Unidrive M Rectifier which can reduce cubicle heating and cooling requirements. Refer to relevant Unidrive M Power Installation Guide or Unidrive M Modular Installation Guide.

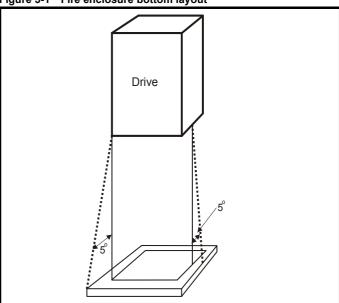
5.2.4 Electrical safety

The installation must be safe under normal and fault conditions. Electrical installation instructions are given in Chapter 6 *Electrical Installation* on page 105.

5.2.5 Fire protection

The drive enclosure is not classified as a fire enclosure. A separate fire enclosure must be provided.

For installation in the USA, a NEMA 12 enclosure is suitable.

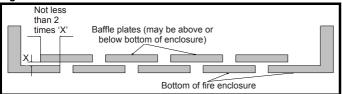

For installation outside the USA, the following (based on IEC 62109-1, standard for PV inverters) is recommended.

Enclosure can be metal and/or polymeric, polymer must meet requirements which can be summarized for larger enclosures as using materials meeting at least UL 94 class 5VB at the point of minimum thickness.

Air filter assemblies to be at least class V-2.

The location and size of the bottom shall cover the area shown in Figure 5-1. Any part of the side which is within the area traced out by the 5° angle is also considered to be part of the bottom of the fire enclosure.

Figure 5-1 Fire enclosure bottom layout


The bottom, including the part of the side considered to be part of the bottom, must be designed to prevent escape of burning material - either by having no openings or by having a baffle construction.

This means that openings for cables etc. must be sealed with materials meeting the 5VB requirement, or else have a baffle above.

See Figure 5-2 for acceptable baffle construction. This does not apply for mounting in an enclosed electrical operating area (restricted access) with concrete floor.

Safety Product System Mechanical Electrical Getting Technical Component UL Introduction Optimization **Parameters** Diagnostics information Information design Installation Installation started Information sizing

Figure 5-2 Fire enclosure baffle construction

5.2.6 Electromagnetic compatibility

Variable speed drives are powerful electronic circuits which can cause electromagnetic interference if not installed correctly with careful attention to the layout of the wiring.

Some simple routine precautions can prevent disturbance to typical industrial control equipment.

If it is necessary to meet strict emission limits, or if it is known that electromagnetically sensitive equipment is located nearby, then full precautions must be observed. Refer to the guidelines given in the relevant *Unidrive M Power Installation Guide*. The DC bus voltage in a Regen system with a 400 V supply is usually 700 V, which corresponds to an AC supply voltage of 519 V. Unless the motor cable is less than 10 m long it is recommended that either an inverter-grade motor is used or else output chokes should be installed to protect the motor from the effect of the fast-rising output voltage pulses.

5.2.7 Hazardous areas

The drive must not be located in a classified hazardous area unless it is installed in an approved enclosure and the installation is certified.

Isolation device

The AC supply must be disconnected from the drive using an approved isolation device before any cover is removed from the drive or before any servicing work is performed.

Stored charge

The drive contains capacitors that remain charged to a potentially lethal voltage after the AC supply has been disconnected. If the drive has been energized, the AC supply must be isolated at least ten minutes before work may continue.

Normally, the capacitors are discharged by an internal resistor. Under certain, unusual fault conditions, it is possible that the capacitors may fail to discharge, or be prevented from being discharged by a voltage applied to the output terminals. If the drive has failed in a manner that causes the display to go blank immediately, it is possible the capacitors will not be discharged. In this case, consult the supplier of the drive or their authorised distributor.

5.3 Regen component dimensions

The dimensions listed are for the following items:

- · Regen inductor
- · Switching frequency filter inductor
- · Switching frequency filter capacitor
- Varistors
- External EMC filter
- Combined regen input filters

5.3.1 Regen inductor

The following Regen inductors can produce significant losses with a normal operating temperature in the region of 150 °C dependant upon the ambient temperature. Location of the Regen inductor should be considered to avoid damage to heat sensitive components or create a fire risk.

NOTE

When installing the following Regen inductors into the system, ensure no enclosures are fitted directly around the inductors thereby preventing air flow and natural cooling.

NOT

All Regen inductors can be mounted in the base of the enclosure as shown in Figure 5-6, with relevant details in Table 5-1, Table 5-2 and Table 5-3.

Regen inductors which are only suitable for base mounting i.e. not back panel mounting as shown in Figure 5-7, are highlighted with an * Table 5-1, Table 5-2 and Table 5-3.

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
--------------------	--------------	---------------------	---------------	----------------------------	----------------------------	--------------------	--------------	------------	-------------------	------------------	-------------	-------------------

Table 5-1 200 V Regen inductor specifications

Inductor part	Rati	ngs	L	D	Н	Weight	Fixing centres (x * y)	Fixing	Fixing	Termination	Туре
number	Α	mH	mm	mm	mm	kg	mm	mm	type	size	Type
4401-0310	9.6	3.500				10					
4401-0311	11.0	2.700	200		215	11	120 x 140			6 way terminal	1
4401-0312	15.5	2.200	200	180	213	12	120 X 140	9		block	'
4401-0313	22	1.600	,			15]	9			
4401-0314	31	1.100	240		270	17	160 x 140			Ø 9 mm hole	
4401-0315	42	0.810	240	200	210	24	100 X 140			2 3 min noie	2
4401-0316	56	0.600	320	220	325	32	200 x 180		Α		
4401-0318	80	0.400	320	220	323	39	200 X 100		Α		
4401-0319*	105	0.320			370	55		•			
4401-0321*	156	0.220	360	260	395	77	240 x 220	11		Ø 11 mm hole	
4401-0322*	192	0.180			393	97		11		2 II IIIII IIOle	3
4401-0323*	250	0.140	410	300	430 110	110	280 x 260				3
4401-0324*	312	0.110	710	310 430	120	200 X 200					
4401-0325*	350	0.100	480	320	490	130	320 x 260				

^{*} Regen inductors can only be horizontally base mounted.

Table 5-2 400 V Regen inductor specifications

Inductor	Rat	ings	L	D	Н	Weight	Fixing centres (x *y)	Fixing	Fixing		
part number	Α	mH	mm	mm	mm	kg	mm	mm	type	Termination size	Type
4401-0405	9.5	6.300	190	82	161	6	170 x 58	8 x 12			
4401-0406	12	5.000	190	91	161	7.5	170 x 168	0 X 12			1
4401-0407	16	3.750	230	124	229	11	180 x 98			0	
4401-0408	25	2.400	230	130	243	15	180 x 98	9 x 12		6 way terminal block	
4401-0409	34	1.760	230	154	242	18	180 x 122			DIOCK	
4401-0410	40	1.500	240	156	245	23	190 x 125	11 x 15			2
4401-0411	46	1.300	265	160	263	28	215 x 126	11 X 15			2
4401-0412	60	1.000	300	176	276	30	240 x 110	11 x 25			
4401-0413	74	0.780	300	200	275	30	240 x 135	11 X 25	С	Ø 9 mm hole	
4401-0414	96	0.630	360	230	325	62	310 x 140		C	Ø 9 min noie	
4401-0415	124	0.480	360	217	322	62	310 x 140	11 x 30			
4401-0416	156	0.380	360	237	318	80	310 x 155	11 X 30			
4401-0417	180	0.330	420	230	370	85	370 x 151			Ø 11 mm hole	
4401-0418	210	0.300	420	257	372	90	370 x 166				3
4401-0419	300	0.20	480	260	429	160	430 x 210				
4401-0420	355	0.168	480	250	447	165	430 x 210			Ø 13 mm hole	
4401-0292	437	0.135	480	280	435	185	430 x 240	13		ווווו חסופ ש is iiiiii noie	
4401-0293	487	0.121	400	200	433	100	430 X 240	13			

^{*} Regen inductors can only be horizontally base mounted.

Safety information	Introduction	Product Information	System design	Mechanical Installation		Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
--------------------	--------------	---------------------	---------------	----------------------------	--	--------------------	--------------	------------	-------------------	------------------	-------------	-------------------

Table 5-3 575 V / 690 V Regen inductor specifications

Inductor part	Rati	ngs	L	D	Н	Weight	Fixing centres (x * y)	Fixing	Fixing	Termination	Туре
number	Α	mH	mm	mm	mm	kg	mm	mm	type	size	Type
4401-0210	19	5.300				32					
4401-0211	22	4.600	320	220	325	33	200 x 180				
4401-0212	27	3.800				39					
4401-0213	36	2.800		260	370	55	240 x 220				2
4401-0214*	43	2.400	360		375	65					
4401-0215*	52	1.900	360	280	395	77	240 x 240	11	Α	Ø 11 mm hole	
4401-0216*	63	1.600			393	97		11	A	2 IT ITITITIOLE	
4401-0217*	85	1.200		300	430	110	280 x 260				
4401-0218*	100	1.000		350	500	170					
4401-0219*	125	0.810	410	320	490	130	320 x 260				
4401-0220*	144	0.700		320	500	140					3
4401-0121*	168	0.600		330	570	150	320 x 240				3
4401-0421*	192	0.530		223	429	180	430 x 183				1
4401-0297*	230	0.441	480	280	435	130	430 x 240	13	С	Ø 13 mm hole	
4401-0298*	281	0.361		200	+33	185	430 X 240				

^{*}Regen inductors can only be horizontally base mounted.

Figure 5-3 Regen inductor type 1 dimensions

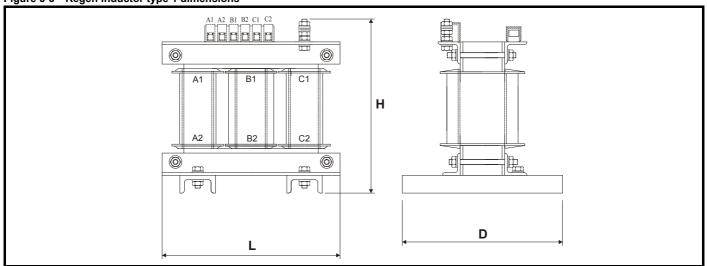
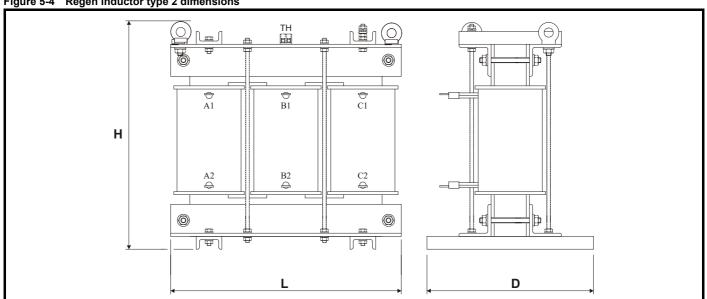



Figure 5-4 Regen inductor type 2 dimensions

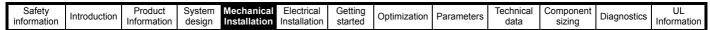
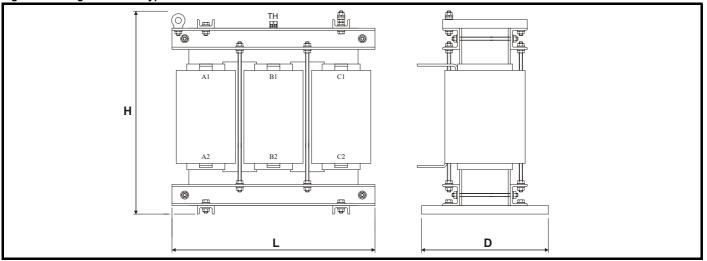
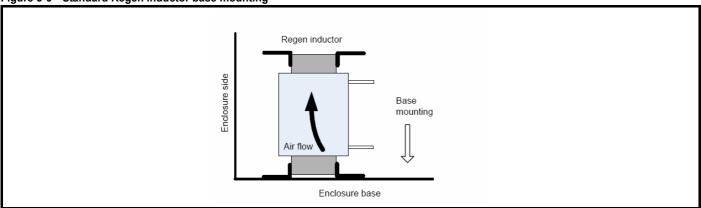



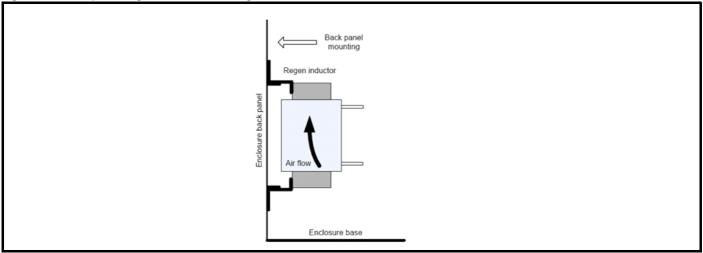
Figure 5-5 Regen inductor type 3 dimensions



Location and mounting of the Regen inductor must be considered to ensure the following:

- 1. Natural cooling is present with no enclosures or guards fitted around the Regen inductor.
- 2. Natural cooling can travel through and over the Regen inductor as designed with the correct mounting.
- 3. For long cable applications forced cooling may be required, therefore additional space is required.
- 4. Regen chokes are suitably located to prevent damage to heat sensitive components.
- 5. Regen chokes are located away from flammable components to prevent fire risk.

Mounting of the Regen inductor in the base of the enclosure is possible as shown below. The mounting brackets as standard are located on the bottom of the Regen inductor allowing the base mounting. Base mounting is the standard configuration and can be used with the complete range of Regen inductors.


Figure 5-6 Standard Regen inductor base mounting

The Regen inductor can also be mounted on the back panel of the enclosure as shown following with the windings in a vertical orientation. If mounting on the back panel is required the Regen inductor must be located as shown to ensure correct air flow across the Regen inductor and to maintain correct mechanical support.

Safety information	Introduction	Product Information	- ,	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
--------------------	--------------	---------------------	-----	----------------------------	----------------------------	--------------------	--------------	------------	----------------	------------------	-------------	-------------------

Figure 5-7 Back panel Regen inductor mounting

5.3.2 Switching frequency filter inductor

Table 5-4 200 V SFF inductor specifications

Inductor part	Rat	ings	L	D	Н	Weight	Fixing centres (x * y)	Fixing	Fixing	Termination	Type
number	Α	mH	mm	mm	mm	kg	mm	mm	type	size	Type
4401-1310	9.6	0.880									
4401-1311	11	1.500	150	90	150	4	120 x 47	8 x 18		6 way terminal	4
4401-1312	15.5	1.100	150	90	150	4	120 X 47	0 % 10		block	'
4401-1313	22	0.700	1								
4401-1314	31	0.500		100		6	130 x 54				
4401-1315	42	0.400	180	120	190	10	130 x 74	8 x 20		Ø 9 mm hole	2
4401-1316	56	0.300			190	12	120 v 104	0 X ZU	В		2
4401-1318	80	0.200		160		13	130 x 184		ь		
4401-1319	105	0.160				16	200 x 180				
4401-1321	156	0.110	240	180	255	22	200 x 100				3
4401-1322	192	0.088	1	190		25	200 X 100	10 x 20		Ø 11 mm hole	
4401-1323	250	0.068		180		37	204 x 113	10 X 20			
4401-1324	312	0.055	300	100	300	31	204 X 113				4
4401-1325	350	0.048	1	190		49	204 x 123				

Table 5-5 400 V SFF inductor specifications

Inductor part	Amps	mH	L	D	Н	Weight	Fixing centres (x * y)	Fixing	Fixing	Termination	Type
number	Amps	mH	mm	mm	mm	kg	mm	mm	type	size	Type
4401-0162	9.5	3.160	150	75	135	3.1	120 x 47		С	0	
4401-0163	12	2.500	150	75	133	3.3	120 X 47	8 x 12	С	6 way terminal block	1
4401-0164	16	1.875	180	82	158	5.3	130 x 58		С	DIOCK	
4401-0165	25	1.200	180	140	179	10	130 x 74	8 x 12	С	Ø 9 mm hole	2
4401-0166	34	0.880	180	179	151	12	130 x 84	8 x 12	С	Ø 9 mm hole	2
4401-0167	40	0.750	180	179	151	11	130 x 84	8 x 12	С	Ø 9 mm hole	2
4401-0168	46	0.650	180	116	179	9.8	130 x 84	8 x 12	С	Ø 9 mm hole	2
4401-0169	60	0.500	240	110	247	20	200 x 80	11 x 20	С	9 mini noie	2
4401-0170	77	0.390	240	168	247	17	200 x 90	11 x 15	С	Ø 9 mm hole	2
4401-0171	96	0.315	240	180	258	18	200 x 100		С	Ø 9 mm hole	2
4401-0172	124	0.240	240	185	260	20	200 X 100		С	9 min noie	2
4401-0173	156	0.190				24		11 x 20			
4401-0174	180	0.165	300	177	300	25	204 x 113	11 X 20	В	Ø 11 mm hole	3
4401-0175	220	0.135	300		300	23			Ь	2 IT IIIII IIOle	3
4401-0176	300	0.100	1	195		40	40 204 x 130				
4401-1205	350	0.080	360	250	317	55	204 x 160	11 x 30	С	Ø 13 mm hole	3
4401-0301	437	0.067	348	176	317	55	328 x 265	9 x 14	С	Ø 13 mm hole	3
4401-0302	487	0.060	357	175	322	58	328 x 267	9 x 14	Α	Ø 14 mm hole	2

Safety	Introduction	Product Information	System	Mechanical Installation	Electrical	Getting	Optimization	Parameters	Technical	Component	Diagnostics	UL Information
information		Information	design	Installation	Installation	started	- p		data	sızıng		Information

Table 5-6 575 V / 690 V SFF inductor specifications

Inductor part	Rati	ngs	L	D	н	Weight	Fixing centres (x * y)	Fixing	Fixing	Termination	Туре
number	Α	mH	mm	mm	mm	kg	mm	mm	type	size	
4401-1211	22	1.400		120	190	10	130 x 74	8 x 20		6 way terminal block	1
4401-1213	36	1	200	160		16	200 x 80				
4401-1214	43	1.200	240	170	255	20	200 x 90			Ø 9 mm hole	2
4401-1215	52	1.000			233	22	200 x 100	10 x 20			2
4401-1216	63	0.800		160		25	200 X 100				
4401-1217	85	0.600				37	204 x 113		В		
4401-1218	100	0.510		180		37	204 x 120	4 x 10			
4401-1219	125	0.400	300	190	300	49	204 x 123			Ø 11 mm hole	
4401-1220	144	0.350	300	200		50	204 x 130	10 x 20		2 II IIIII IIII	3
4401-1221	168	0.300		200		50	204 X 130				
4401-1222	192	0.260	325	220	325	55	204 x 160	4 x 10			
4401-1223	192	0.210	300	200	300	50	204 x 130	10 x 20			
4401-0306	230	0.221	360	173	322	58	328 x 263	11 x 17	Α	Ø 14 mm hole	2
4401-0307	281	0.181	300	176	322	66	320 X 203	11 X 17		2 14 11111 11016	

Figure 5-8 Top view of fixing type A

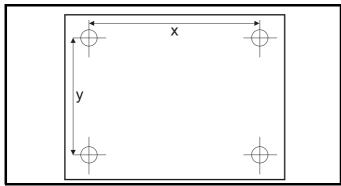


Figure 5-9 Top view of fixing type B

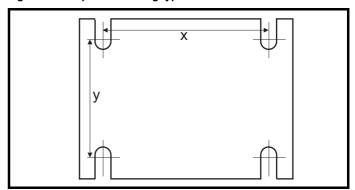
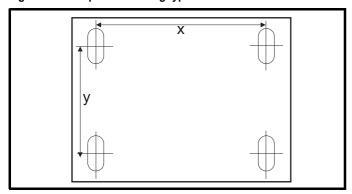



Figure 5-10 Top view of fixing type C

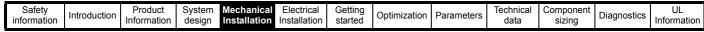


Figure 5-11 Switching frequency filter inductor type 1 dimensions

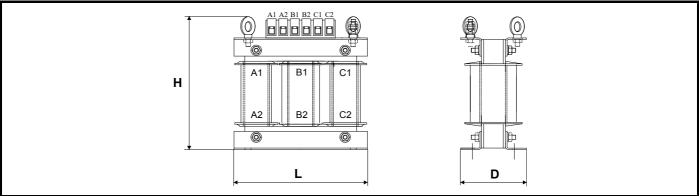


Figure 5-12 Switching frequency filter inductor type 2 dimensions

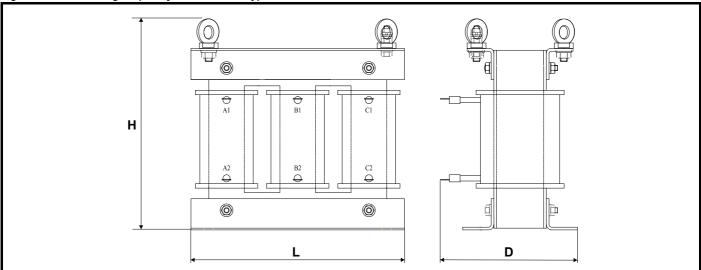
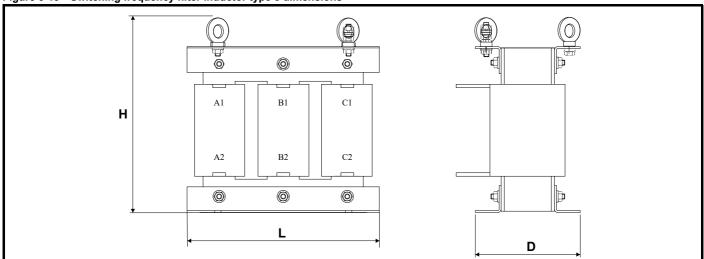
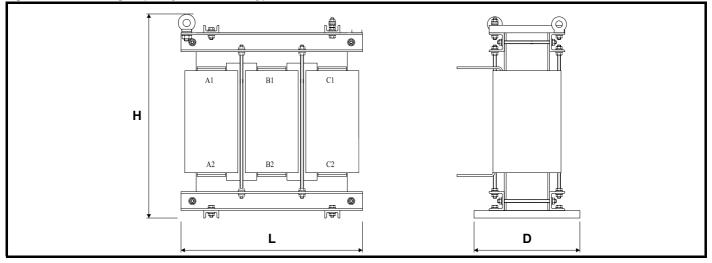




Figure 5-13 Switching frequency filter inductor type 3 dimensions

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component	Diagnostics	UL Information
mormation		inionnation	design	installation	mstallation	Started	· .		uala	Sizirig		mormation

Figure 5-14 Switching frequency filter inductor type 4 dimensions

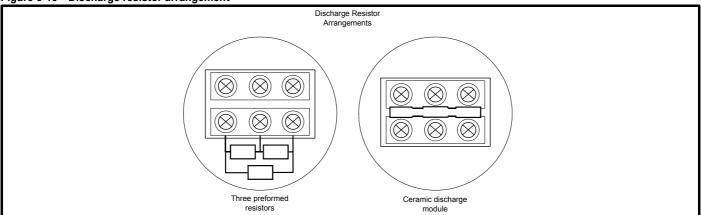
5.3.3 Switching frequency filter capacitors

Table 5-7 Switching frequency filter capacitors

3-phase capacitor	CN	ØxL	Discharge resistor	Weight	Mounting	Max torque	Type
part number	μF	mm	Ω	kg	Mounting	N m (lb in)	Туре
1664-1074	3 x 7.0	53 x 114	2.2 M	0.3	M8 Stud	4 (35.4)	DhiCan
1664-2174	3 x 17.0	63.5 x 129	1 M	0.4			PhiCap
1610-7804	3 x 8.0	82 x 210	620 k	0.5	1		PoleCap
1668-7833	3 x 8.3			1.2			
1666-8113	3 x 11.2		390 k	1.3			
1668-8163	3 x 16.6			1.3			
1666-8223	3 x 22.5	116 x 164	C20 Ir	1.4	M12 Stud	10 (88.6)	
1665-8324	3 x 32		620 k	1.1			PhaseCap
1665-8394	3 x 39		390 k	1.2			
1664-2644	3 x 64		270 k	1.2	1		
1665-8644	3 x 64.3	116 x 243	3 x 390 k*	2.2	1		
1668-8464	3 x 46.4	136 x 250	3 x 150 k**	3.2	1		

^{*} Connected in delta.

^{**} Connected in star.



The switching frequency filter capacitors are special parts which are used for filtering of the Regen drives PWM and only the recommended parts should be used.

Safety information	Introduction	Product Information	System design	Mechanical Installation		Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
--------------------	--------------	---------------------	---------------	----------------------------	--	--------------------	--------------	------------	-------------------	------------------	-------------	-------------------

Discharge resistors for SFF capacitors rated to 2 % THD_v

Figure 5-15 Discharge resistor arrangement

Cautions and warnings

In case of dents of more than 2 mm depth or any other mechanical damage, capacitors must not be used at all.

NOTE

Care should be taken to ensure that there is still electrical clearance of 15 mm between terminations and other live or earthed parts above the capacitor, in case of safety device activation. It is recommended that the capacitors are to be mounted vertically.

Discharging

Capacitors must be discharged to a maximum of 10 % of rated voltage before they are switched in again.

The capacitor must be discharged to 75 V or less within 3 minutes.

There must be not any switch, fuse or any other disconnecting device in the circuit between the power capacitor and the discharging device.

Safety information Electrical Installation Getting started UL Information System design Mechanical Installation Product Component Technical Introduction Optimization Parameters Diagnostics Information data sizing

Figure 5-16 3-phase PHIcap dimensions

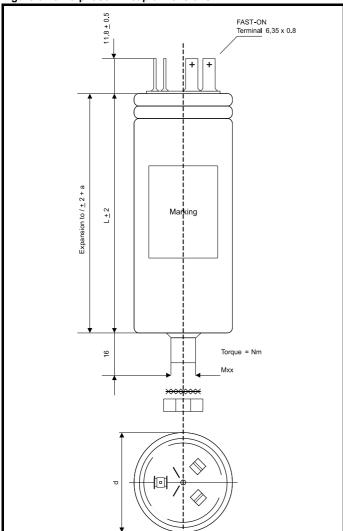


Figure 5-17 3-phase Polecap dimensions

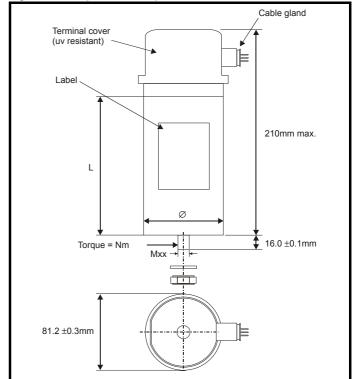
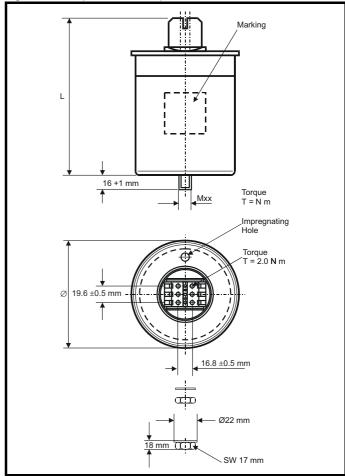



Figure 5-18 3-phase Phasecap dimensions

Safety	Introduction	Product	- ,	Mechanical		Getting	Optimization	Parameters	Technical	Component	Diagnostics	UL
information	IIIIIOduction	Information	design	Installation	Installation	started	Optimization	Faiailleteis	data	sizing	Diagnostics	Information

Figure 5-19 SFF capacitor dimensions (rated to 8 % THD_v)

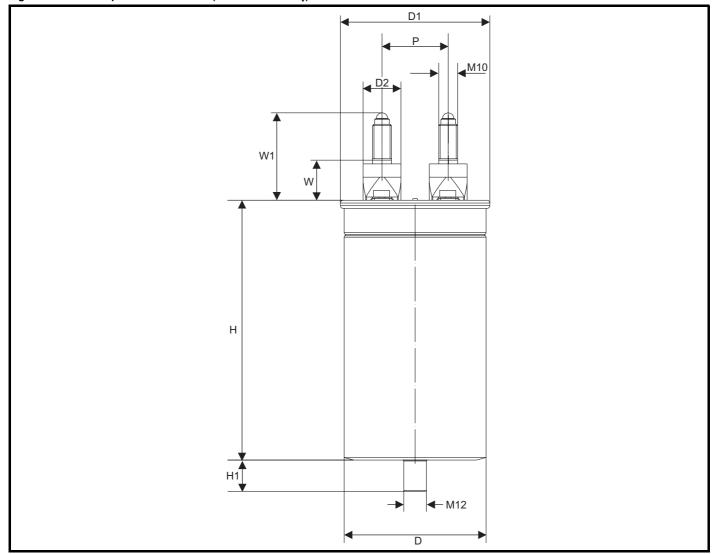


Table 5-8 SFF capacitor dimensions by part number

Dort number	D	D1	D2	Н	H1	Р	W	W1	Weight
Part number	mm	mm	mm	mm	mm	mm	mm	mm	kg
1610-8224	65	69	20	117	16	28	18	40	0.4
1610-8334	75	79	20	117	16	35	21	45	0.5
1610-8474	65	69	20	247	16	28	18	40	0.8
1610-8684	65	69	20	247	16	28	18	40	1
1610-8154	65	69	20	117	16	28	18	40	0.4
1610-8104	65	69	20	147	16	28	18	40	0.4

Mounting

Mounting vertically only.

NOTE

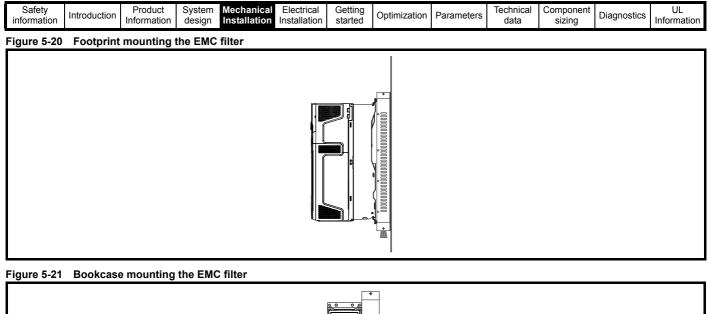
To allow sufficient cooling space:

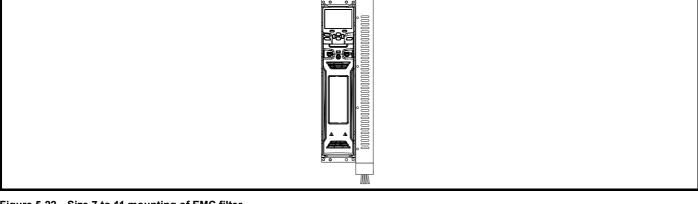
- > 10 mm space is required between caps.
- > 15 mm space is required above the capacitor to allow the overpressure disconnector to extend.

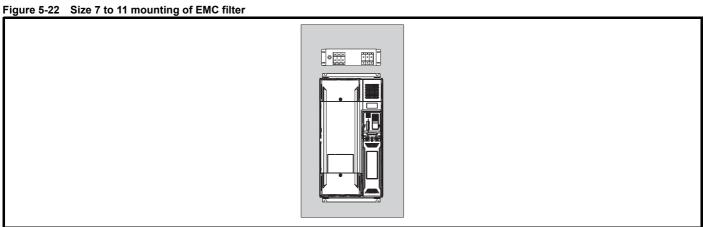
Safety information	Introduction	Product Information	- ,	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
--------------------	--------------	---------------------	-----	----------------------------	----------------------------	-----------------	--------------	------------	----------------	------------------	-------------	-------------------

5.4 External EMC filter

Table 5-9 Drive EMC filter details (size 3 to 11)


Model	Part number	Weight
03200066 to 03200106	4200-3230	1.9 kg (4.20 lb)
04200137 to 04200185	4200-0272	4.0 kg (8.82 lb)
05200250	4200-0312	5.5 kg (12.13 lb)
06200330 to 06200440	4200-2300	6.5 kg (14.30 lb)
07200610 to 07200830	4200-1132	6.0 kg (13.20 lb)
08201160 to 08201320	4200-1972	9.6 kg (21.20 lb)
09201760 to 09202190 (9A)	4200-3021	11.0 kg (24.30 lb)
10202830 to 10203000	4200-4460	12.0 kg (26.50 lb)
03400078 to 03400100	4200-3480	2.0 kg (4.40 lb)
04400150 to 04400172	4200-0252	4.1 kg (9.04 lb)
05400270 to 05400300	4200-0402	5.5 kg (12.13 lb)
06400350 to 06400470	4200-4800	6.7 kg (14.80 lb)
07400660 to 07401000	4200-1132	6.0 kg (13.20 lb)
08401340 to 08401570	4200-1972	9.6 kg (21.20 lb)
09402000 to 09402240 (9A)	4200-3021	11.0 kg (24.30 lb)
10402700 to 10403200	4200-4460	12.0 kg (26.50 lb)
11403770 to 11404640	4200-0400	14.7 kg (32.41 lb)
06500150 to 06500350	4200-3690	7.0 kg (15.40 lb)
07500440 to 07500550	4200-0672	6.2 kg (13.70 lb)
08500630 to 08500860	4200-1662	9.4 kg (20.70 lb)
09501040 to 09501310 (9A)	4200-1660	5.2 kg (11.50 lb)
10501520 to 10501900	4200-2210	10.3 kg (22.70 lb)
11502000 to 11502850	4200-0690	16.8 kg (36.90 lb)
07600190 to 07600540	4200-0672	6.2 kg (13.70 lb)
08600630 to 08600860	4200-1662	9.4 kg (20.70 lb)
09601040 to 09601310 (9A)	4200-1660	5.2 kg (11.50 lb)
10601500 to 10601780	4200-2210	10.3 kg (22.70 lb)
11602100 to 11602630	4200-0690	16.8 kg (36.90 lb)




When an EMC filter is used, the switching frequency filter detailed must also be used. Failure to observe this precaution may result in damage to the EMC filter thereby rendering it ineffective.

The external EMC filters for sizes 3 to 6 can be footprint or bookcase mounted, see Figure 5-20 and Figure 5-21. The external EMC filters for sizes 7 to 11 are designed to be mounted above the drive, as shown in Figure 5-22.

Mount the external EMC filter following the guidelines in section 6.5.4 Compliance with generic emission standards on page 131.

Mount the external EMC filter following the guidelines in section 6.5.4 Compliance with generic emission standards on page 131.

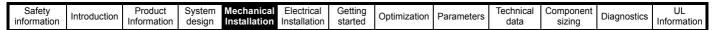
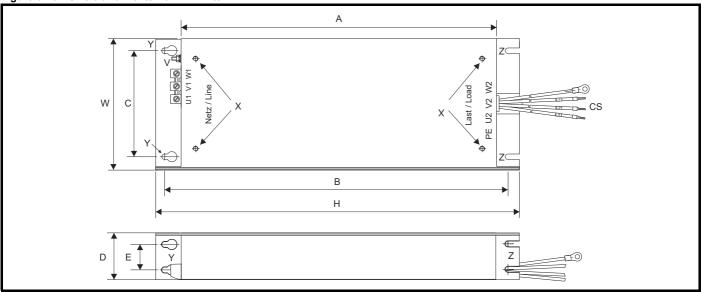



Figure 5-23 Size 3 and 4 external EMC filter

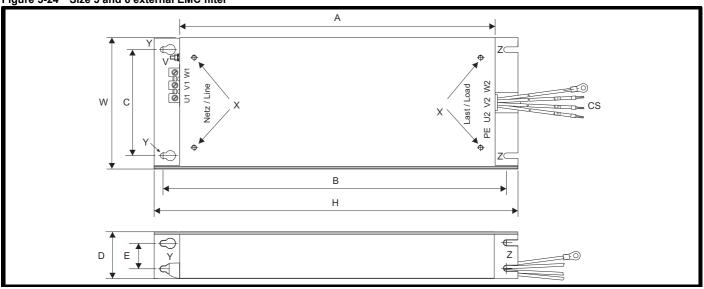
V: Ground stud

X: Threaded holes for footprint mounting of the drive

Y: Footprint mounting hole diameter

Z: Bookcase mounting slot diameter.

CS: Cable size


Table 5-10 Size 3 external EMC filter dimensions

Part number	Α	В	С	D	E	Н	W	V/X	Y/Z	CS
4200-3230	384 mm	414 mm	56 mm	41 mm		426 mm	83 mm	M5	5.5 mm	2.5 mm ²
4200-3480	(15.12 in)	(16.30 in)	(2.21 in)	(1.61 in)		(16.77 in)	(3.27 in)	IVIO	(0.22 in)	(14 AWG)

Table 5-11 Size 4 external EMC filter dimensions

Part number	Α	В	С	D	E	Н	W	V/X	Y/Z	CS
4200-0272	395 mm	425 mm	100 mm	60 mm	33 mm	437 mm	123 mm	M6	6.5 mm	6 mm ²
4200-0252	(15.55 in)	(16.73 in)	(3.94 in)	(2.36 in)	(1.30 in)	(17.2 in)	(4.84 in)	IVIO	(0.26 in)	(10 AWG)

Figure 5-24 Size 5 and 6 external EMC filter

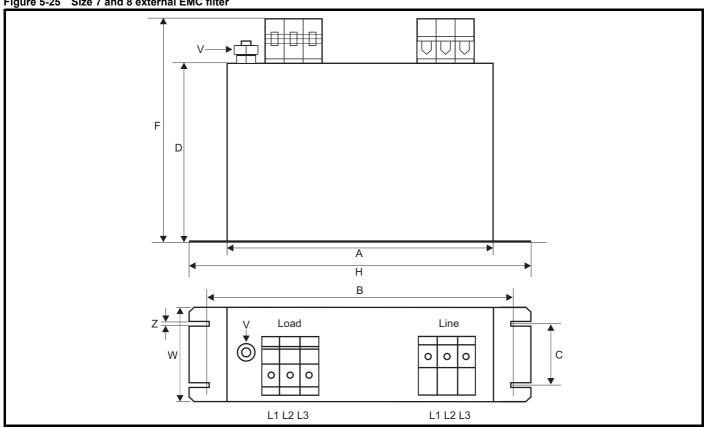
V: Ground stud

X: Threaded holes for footprint mounting of the drive

Z: Bookcase mounting slot diameter. CS: Cable size

Y: Footprint mounting hole diameter

Safety information	Introduction	Product Information	- 3	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
--------------------	--------------	------------------------	-----	----------------------------	----------------------------	--------------------	--------------	------------	-------------------	------------------	-------------	-------------------


Table 5-12 Size 5 external EMC filter dimensions

Part number	Α	В	С	D	E	Н	W	V/X	Y/Z	CS
4200-0312										10 mm ²
4200-0402	395 mm	425 mm	106 mm	60 mm	33 mm	437 mm	143 mm	M6	6.5 mm	(8 AWG)
4200-0122	(15.55 in)	(16.73 in)	(4.17 in)	(2.36 in)	(1.30 in)	(17.2 in)	(5.63 in)	IVIO	(0.26 in)	2.5 mm ² (14 AWG)

Table 5-13 Size 6 external EMC filter dimensions

Part number	Α	В	С	D	Е	Н	W	V/X	Y/Z	CS
4200-2300	392 mm	420 mm	180 mm	60 mm	33 mm	434 mm	210 mm		6.5 mm	16 mm²
4200-4800	(15.43 in)	(16.54 in)	(7.09 in)	(2.36 in)	(1.30 in)	(17.09 in)	(8.27 in)	M6	(0.26 in)	(6 AWG)
4200-3690	(10110111)	(1010 1 111)	(1.00)	(=:00 :::)	(1.00)	(11100 111)	(0.2)		(0.20)	(07.11.0)

Figure 5-25 Size 7 and 8 external EMC filter

Table 5-14 Size 7 external EMC filter dimensions

Part number	Α	В	С	D	Е	F	Н	W	٧	X	Y	Z
4200-1132	240 mm	255 mm	55 mm	150 mm		205 mm	270 mm	90 mm	M10			6.5 mm
4200-0672	(9.45 in)	(10.04 in)	(2.17 in)	(5.90 in)		(8.07 in)	(10.63 in)	(3.54 in)	IVITO			(0.26 in)

Table 5-15 Size 8 external EMC filter dimensions

Part number	Α	В	С	D	Е	F	Н	W	V	X	Υ	Z
4200-1972	260 mm	275 mm	85 mm	170 mm		249 mm	300 mm	120 mm	M10			6.5 mm
4200-1662	(10.24 in)	(10.83 in)	(3.35 in)	(6.69 in)		(9.79 in)	(11.81 in)	(4.72 in)	IVI IO			(10.26 in)

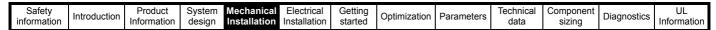


Figure 5-26 Size 9A external EMC filter

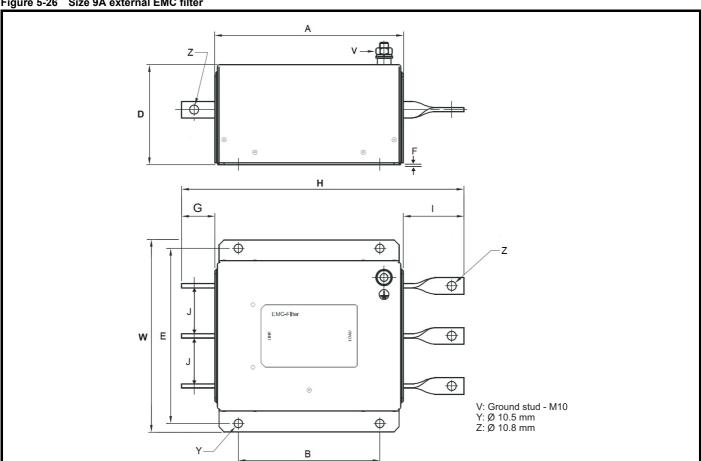


Table 5-16 Size 9A external EMC filter dimensions

Part number	Α	В	D	E	F	G	Н	I	J	W
4200-3021	220 mm (8.66 in)	170 mm (6.70 in)	120 mm (4.72 in)	210 mm (8.27 in)	2 mm (0.08 in)	40 mm (1.57 in)	339 mm (13.34)	73 mm (2.87 in)	60 mm (2.36 in)	230 mm (9.06 in)
4200-1660	280 mm (11.02 in)	180 mm (7.09 in)	105 mm (4.13 in)	225 mm (8.86 in)	2 mm (0.08 in)	40 mm (1.57 in)	360 mm (14.17 in)	73 mm (2.87 in)	60 mm (2.36 in)	245 mm (9.65 in)

Figure 5-27 External EMC filter (size 9 and 10)

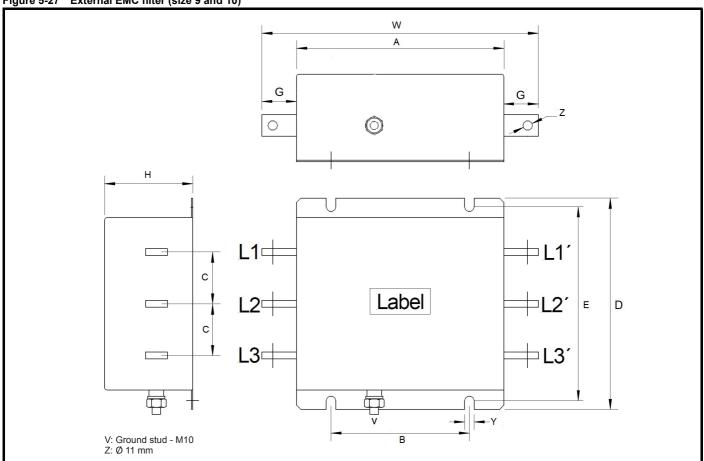


Table 5-17 Unidrive M size 9 and 10 external EMC filter dimensions

Part number	Α	В	С	D	E	G	Н	W	Y
4200-2210	280 mm	180 mm	57 mm	245 mm	225 mm	40 mm	105 mm	360 mm	11 mm
4200-2210	(11.02 in)	(7.09 in)	(2.24 in)	(9.65 in)	(8.86 in)	(1.57 in)	(4.13 in)	(14.7 in)	(0.43 in)

Figure 5-28 External EMC filter (size 9 and 10)

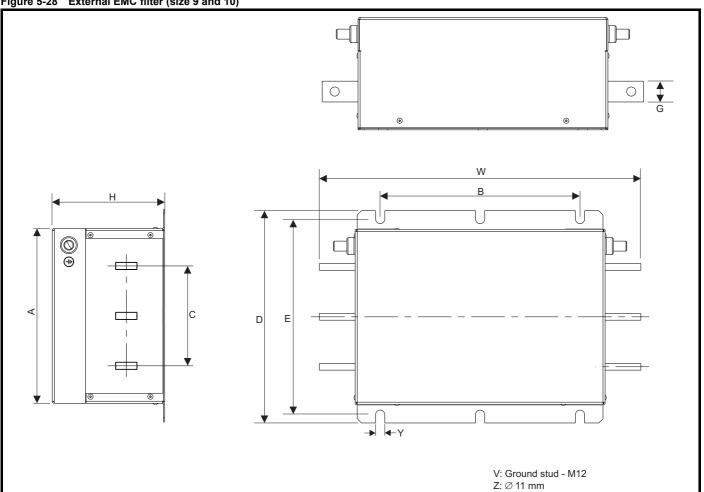


Table 5-18 Unidrive M size 9 and 10 external EMC filter dimensions

Part number	Α	В	С	D	E	G	Н	W	Υ
4200-4460	210 mm	240 mm	120 mm	255 mm	235 mm	25 mm	135 mm	386 mm	11 mm
4200-4400	(8.27 in)	(9.45 in)	(4.72 in)	(10.04 in)	(9.25 in)	(0.98 in)	(5.32 in)	(14.02 in)	(0.43 in)

Figure 5-29 Size 11 external EMC filter

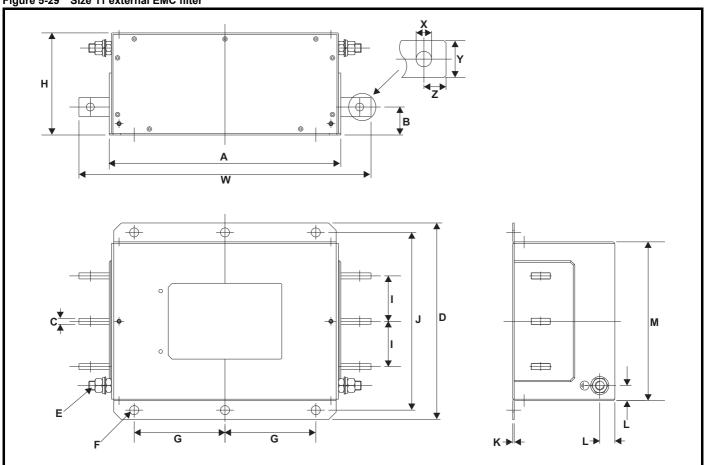


Table 5-19 Size 11 external EMC filter dimensions

Part number	Α	В	С	D	E	F	G	Н	I	J	K
4200-0400 4200-0690	306 mm (12.05 in)	37 mm (1.46 in)	8 mm (0.32 in)	260 mm (10.2 in)	M12	12 mm (0.47 in)	120 mm (4.72 in)	135 mm (5.32 in)	60 mm (2.36 in)	235 mm (9.25 in)	2 mm (0.08 in)
Part number	L	M	X	Υ	Z	W					
4200-0400	20 mm	210 mm	10.5 mm	25 mm	15 mm	386 mm					
4200-0690	(0.79 in)	(8.27 in)	(0.41 in)	(0.98 in)	(0.59 in)	(15.20 in)					

When a EMC filter is used, the switching frequency filter detailed must also be used. Failure to observe this may result in the EMC filter becoming ineffective and being damaged.

Table 5-20 Resistor mounting bracket dimensions

Α	В	С	D
24.0 mm	33.5 mm	21.45 mm ±0.2	Ø 5.0

For component selection refer to either Chapter 10 Technical data on page 276 or section 3.9 Regen components on page 29.

Safety information	Introduction	Product Information	- ,	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
--------------------	--------------	------------------------	-----	----------------------------	----------------------------	--------------------	--------------	------------	----------------	------------------	-------------	-------------------

5.4.1 Varistors

Figure 5-30 Varistor dimensions

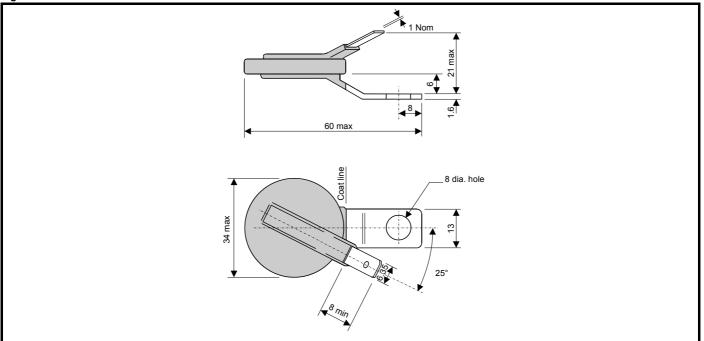


Table 5-21 Varistor specifications

Drive rating	Varistor voltage rating V _{RMS}	Energy rating J	Quantity per system	Configuration	Part number
200 V	550	620	3	Line to line	2482-3291
(200 V to 240 V ±10 %)	680	760	3	Line to ground	2482-3211
400 V	550	620	3	Line to line	2482-3291
(380 V to 480 V ±10 %)	680	760	3	Line to ground	2482-3211
575 V	680	760	3	Line to line	2482-3211
(500 V to 575 V ±10 %)	1000	1200	3	Line to ground	2482-3218
690 V	385	550	6	2 in series line to line	2482-3262
(500 V to 690 V ±10 %)	1000	1200	3	Line to ground	2482-3218

Mechanical Installation Electrical Installation Getting started Safety Product UL System Technical Component Diagnostics Introduction Optimization Parameters information Information design data sizing Information

5.5 Combined Regen input filters (combi filter)

Combi filters listed in Table 3-23 *Combi filter selection* on page 39 are equipped with an internal thermal switch to prevent the EMC filter inductor from overheating. The thermal switch must be configured to open the main supply contactor in the event of a thermal overload.

Figure 5-31 Schaffner combi filter dimensions (FS6085-83-35-2 and FS6085-125-35-2)

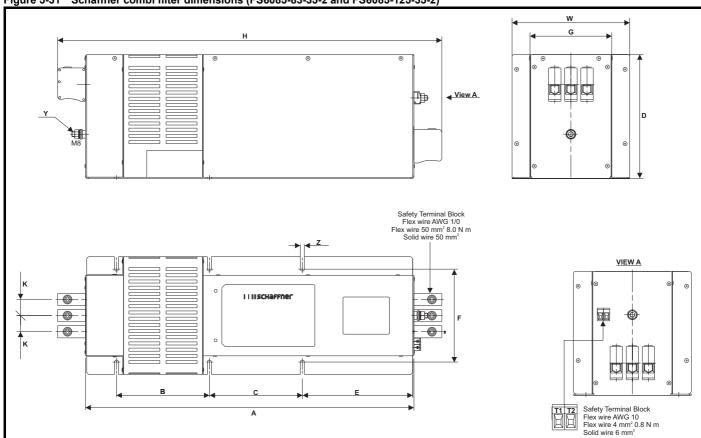


Table 5-22 Schaffner combi filter dimensions (FS6085-83-35-2 and FS6085-125-35-2)

Schaffner model number	A	В	С	D	E	F	G	Н	К	w	Y	Z
FS6085-83-35-2	530 mm	150 mm	150 mm	200 mm	178 mm	150 mm	132 mm	620 mm	26 mm	190 mm	M8	6.5 mm
FS6085-125-35-2	(20.87 in)	(5.91 in)	(5.91 in)	(7.87 in)	(7.01 in)	(5.91 in)	(5.20 in)	(24.41 in)	(1.02 in)	(7.48 in)	IVIO	(0.26 in)

Figure 5-32 Schaffner combi filter dimensions (FS6085-168-40-2 and FS6085-205-40-2)

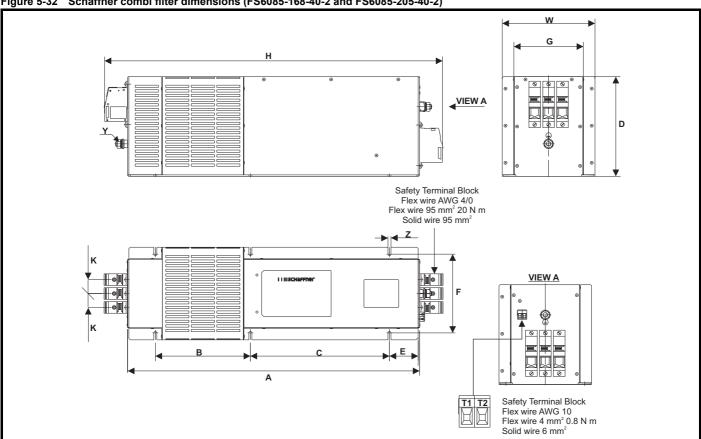


Table 5-23 Schaffner combi filter dimensions (FS6085-168-40-2 and FS6085-205-40-2)

Schaffner model number	A	В	С	D	E	F	G	Н	К	w	Y	z
FS6085-168-40-2	630 mm	205 mm	300 mm	215 mm	62 mm	170 mm	150 mm	730 mm	30 mm	200 mm	M10	6.5 mm
FS6085-205-40-2	(24.80 in)	(8.07 in)	(11.81 in)	(8.47 in)	(2.44 in)	(6.69 in)	(5.91 in)	(28.74 in)	(1.18 in)	(7.87 in)	WITO	(0.26 in)

Figure 5-33 Schaffner combi filter dimensions (FS6085-300-99-2)

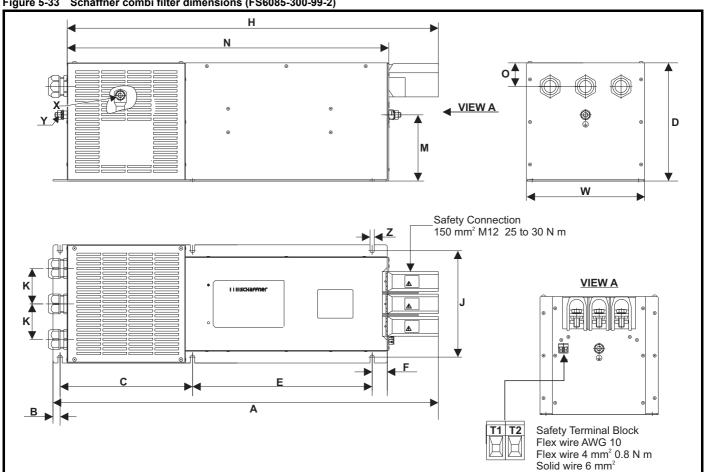


Table 5-24 Schaffner combi filter dimensions (FS6085-300-99-2)

Schaffner model number	Α	В	С	D	E	F	Н	J
	815 mm (32.09 in)	15 mm (0.59 in)	280 mm (11.02 in)	250 mm (9.84 in)	380 mm (14.96 in)	32 mm (1.26 in)	785 mm (30.91 in)	225 mm (8.86 in)
FS6085-300-99-2	K	М	N	0	W	Х	Y	Z
	75 mm (2.95 in)	140 mm (5.51 in)	680 mm (26.77 in)	50 mm (1.97 in)	250 mm (9.84 in)	M12	M10	9 mm (0.35 in)

Figure 5-34 Schaffner combi filter dimensions (FS6085-350-99-2)

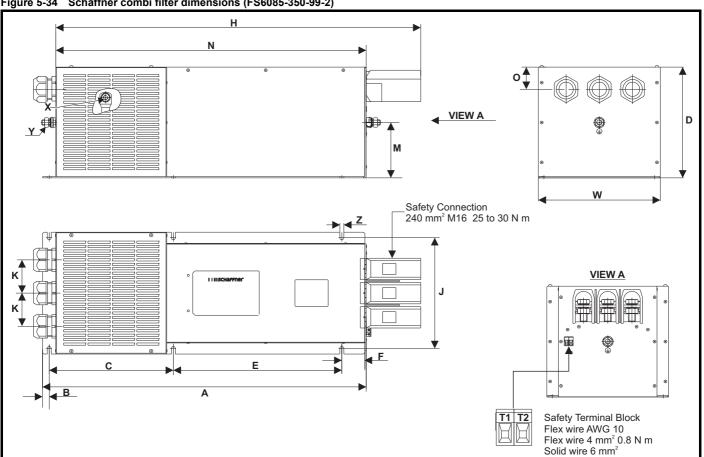


Table 5-25 Schaffner combi filter dimensions (FS6085-350-99-2)

Schaffner model number	Α	В	С	D	E	F	Н	J
	730 mm (28.74 in)	15 mm (0.59 in)	280 mm (11.02 in)	250 mm (9.84 in)	380 mm (14.96 in)	52 mm (2.05 in)	823 mm (32.40 in)	250 mm (9.84 in)
FS6085-350-99-2	K	М	N	0	W	Х	Y	Z
	75 mm (2.95 in)	125 mm (4.92 in)	700 mm (27.56 in)	50 mm (1.97 in)	275 mm (10.83 in)	M12	M12	9 mm (0.35 in)

Figure 5-35 Schaffner combi filter dimensions (FS6085HV-200-40-2)

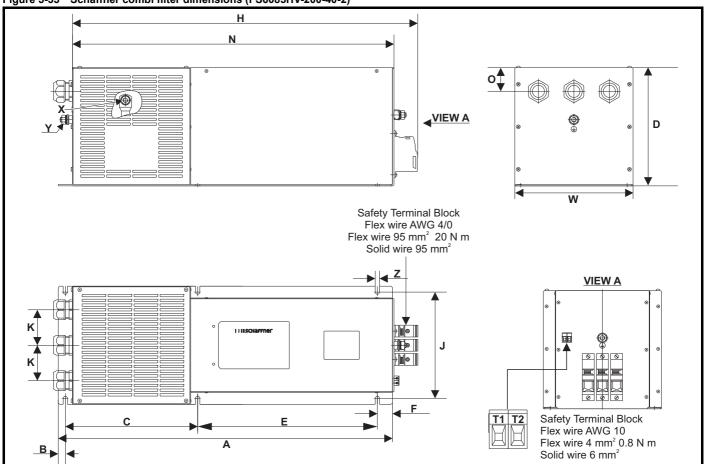
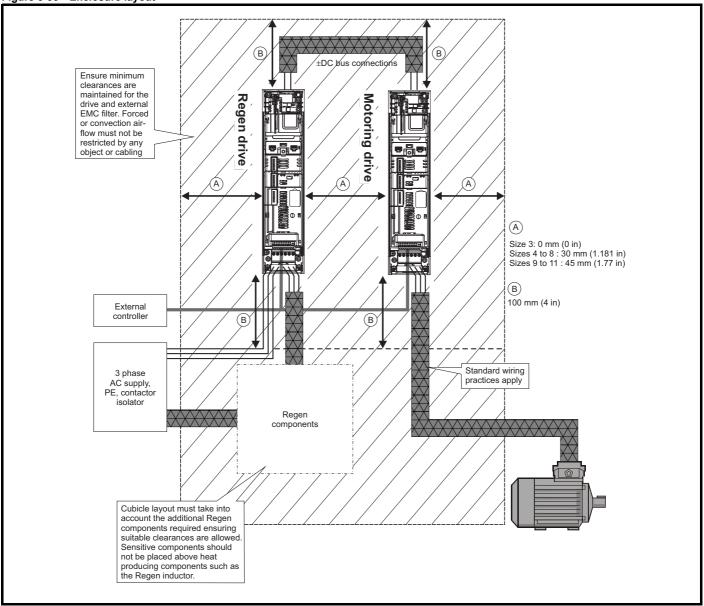


Table 5-26 Schaffner combi filter dimensions (FS6085HV-200-40-2)


	•							
Schaffner model number	Α	В	С	D	E	F	Н	J
	710 mm (27.95 in)	15 mm (0.59 in)	280 mm (11.02 in)	250 mm (9.84 in)	380 mm (14.96 in)	35 mm (1.38 in)	730 mm (28.74 in)	225 mm (8.86 in)
FS6085 HV -200-40-2	K	М	N	0	W	Х	Y	Z
	75 mm (2.95 in)	140 mm (5.51 in)	680 mm (26.77 in)	50 mm (1.97 in)	250 mm (9.84 in)	M10	M10	9 mm (0.35 in)

Safety information	Introduction	Product Information	System design	Mechanical Installation		Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
--------------------	--------------	------------------------	---------------	----------------------------	--	--------------------	--------------	------------	----------------	------------------	-------------	-------------------

5.5.1 Enclosure layout

Please observe the clearances in the diagram below for the Unidrive M plus also take into account any clearances required for other devices / auxiliary equipment when planning the installation.

Figure 5-36 Enclosure layout

5.5.2 Enclosure sizing

- 1. Add the dissipation figures from Chapter 10 Technical data for each drive that is to be installed in the enclosure.
- 2. Calculate the total heat dissipation (in Watts) of any other equipment to be installed in the enclosure.
 - EMC filter
 - Switching frequency filter
 - · Regen choke
- 3. Add the heat dissipation figures obtained above. This gives a figure in Watts for the total heat that will be dissipated inside the enclosure.

Calculating the size of a sealed enclosure

The enclosure transfers internally generated heat into the surrounding air by natural convection (or external forced air flow); the greater the surface area of the enclosure walls, the better is the dissipation capability. Only the surfaces of the enclosure that are unobstructed (not in contact with a wall or floor) can dissipate heat.

Calculate the minimum required unobstructed surface area $\mathbf{A_e}$ for the enclosure from:

$$\mathbf{A_e} = \frac{\mathbf{P}}{\mathbf{k}(\mathbf{T_{int}} - \mathbf{T_{ext}})}$$

Safety information	Introduction	Product Information	System design	Mechanical Installation		Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
--------------------	--------------	---------------------	---------------	----------------------------	--	-----------------	--------------	------------	-------------------	------------------	-------------	-------------------

Where:

A_e Unobstructed surface area in m² (1 m² = 10.9 ft²)

T_{ext} Maximum expected temperature in °C *outside* the enclosure

T_{int} Maximum permissible temperature in °C inside the enclosure

P Power in Watts dissipated by *all* heat sources in the enclosure

k Heat transmission coefficient of the enclosure material in W/m²/°C

Example

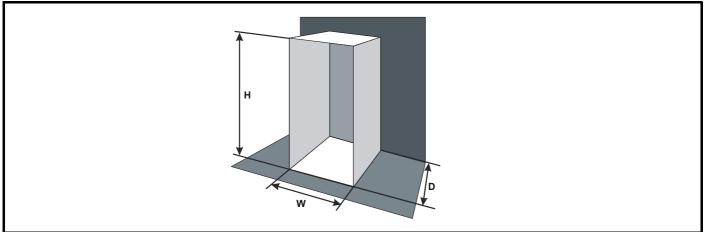
To calculate the size of a non-ventilated enclosure for the following:

- Two Unidrive M600-03400078 (1 x Regen and 1 x motoring drive) models operating at the Normal Duty rating
- · Each drive to operate at 6 kHz PWM switching frequency
- · External EMC filter (4200-3480) for each drive
- Maximum ambient temperature inside the enclosure: 40 °C
- Maximum ambient temperature outside the enclosure: 30 °C

Dissipation of each drive: 186 W (see Chapter 10 Technical Data).

Dissipation of external EMC filter: 13 W (max) (see Chapter 10 Technical Data)

Dissipation of each external Regen inductor (4401-0001): 125 W x 1 (see section 10.4.2 Regen filter components for high quality/low harmonic power supplies on page 294)


Dissipation of external switching frequency filter (4401-0162): 28 W x 1 (see Chapter 10 Technical data on page 276)

Total dissipation: $((186 \times 2) + 13 + 125 + 28) = 538 \text{ W}$

The enclosure is to be made from painted 2 mm (0.079 in) sheet steel having a heat transmission coefficient of 5.5 W/m²/°C. Only the top, front, and two sides of the enclosure are free to dissipate heat.

The value of 5.5 W/m²/°C can generally be used with a sheet steel cubicle (exact values can be obtained by the supplier of the material). If in any doubt, allow for a greater margin in the temperature rise.

Figure 5-37 Enclosure having front, sides and top panels free to dissipate heat

Insert the following values:

T_{int} 40 °C T_{ext} 30 °C k 5.5 P 538 W

The minimum required heat conducting area is then:

$$A_e = \frac{538}{5,5(40-30)}$$

= 9.782 m² (106.62 ft²) (1 m² = 10.9 ft²)

Estimate two of the enclosure dimensions - the height (H) and depth (D), for instance. Calculate the width (W) from:

$$W = \frac{A_e - 2HD}{H + D}$$

Safety	Introduction	Product	System	Mechanical	Electrical	Getting	Optimization	Parameters	Technical	Component	Diagnostics	UL
information	Introduction	Information	design	Installation	Installation	started	Optimization	Farameters	data	sizing	Diagnostics	Information

Inserting $\mathbf{H} = 2m$ and $\mathbf{D} = 0.6m$, obtain the minimum width:

$$W \ = \ \frac{9,782 - (2 \times 2 \times 0,6)}{2 + 0,6}$$

If the enclosure is too large for the space available, it can be made smaller only by attending to one or all of the following:

- Using a lower PWM switching frequency to reduce the dissipation in the drives
- Reducing the ambient temperature outside the enclosure, and/or applying forced-air cooling to the outside of the enclosure
- · Reducing the number of drives in the enclosure
- · Removing other heat-generating equipment

Calculating the air-flow in a ventilated enclosure

The dimensions of the enclosure are required only for accommodating the equipment. The equipment is cooled by the forced air flow.

Calculate the minimum required volume of ventilating air from:

$$V = \frac{3kP}{T_{int} - T_{ext}}$$

Where:

V Air-flow in m^3 per hour (1 $m^3/hr = 0.59$ ft³/min)

T_{ext} Maximum expected temperature in °C *outside* the enclosure

T_{int} Maximum permissible temperature in °C *inside* the enclosure
 Power in Watts dissipated by *all* heat sources in the

P Power in Watts dissipated by all heat sources in the enclosure

k Ratio of
$$\frac{P_o}{P_I}$$

Where:

Po is the air pressure at sea level

P_I is the air pressure at the installation

Typically use a factor of 1.2 to 1.3, to allow also for pressure-drops in dirty air-filters.

Example

To calculate the size of an enclosure for the following:

- Two M600-03400100 (1 x Regen and 1 x motoring drive) models operating at the Normal Duty rating
- · Each drive to operate at 6kHz PWM switching frequency
- External EMC filter (4200-3480) for each drive
- Maximum ambient temperature inside the enclosure: 40 °C
- · Maximum ambient temperature outside the enclosure: 30 °C

Dissipation of each drive: 209 W (see Chapter 10 *Technical data* on page 276).

Dissipation of external EMC filter: 13 W (max) (see Chapter 10 *Technical data* on page 276).

Dissipation of external Regen inductor (4401-0002): 146 W x 1 (see section 10.4.2 Regen filter components for high quality/low harmonic power supplies on page 294)

Dissipation of external switching frequency filter (4401-0163): 35 W x 1 (see switching frequency filter (4401-0163): 35 W x 1 (see Chapter 10 *Technical data* on page 276).

Total dissipation: $((209 \times 2) + (13 + 146 + 35) = 612 \text{ W}$

Insert the following values:

T_{int} 40 °C T_{ext} 30 °C k 1.3 P 612 W

Then:

$$V = \frac{3 \times 1, 3 \times 612}{40 - 30}$$

= 238.68 m³/hr (140.82 ft³/min) (1 m³/hr = 0.59 ft³/min)

5.6 Cubicle design and drive ambient temperature

Drive derating is required for operation in high ambient temperatures (derating information is provided in Chapter 10 *Technical data* on page 276).

Totally enclosing or through panel mounting the drive in either a sealed cabinet (no airflow) or in a well ventilated cabinet makes a significant difference on drive cooling.

The chosen method affects the ambient temperature value (T_{rate}) which should be used for any necessary derating to ensure sufficient cooling for the whole of the drive.

The ambient temperature for the four different combinations is defined below:

- 1. Totally enclosed with no air flow (<2 m/s) over the drive $T_{\rm rate} = T_{\rm int} + 5~^{\circ}{\rm C}$
- 2. Totally enclosed with air flow (>2 m/s) over the drive $T_{\rm rate} = T_{\rm int}$
- 3. Through panel mounted with no airflow (<2 m/s) over the drive T_{rate} = the greater of T_{ext} +5 °C, or T_{int}
- 4. Through panel mounted with air flow (>2 m/s) over the drive T_{rate} = the greater of T_{ext} or T_{int}

Where:

T_{ext} = Temperature outside the cabinet

T_{int} = Temperature inside the cabinet

T_{rate} = Temperature used to select current rating from tables in Chapter 10 *Technical data* on page 276.

Regen inductors can produce significant losses with a normal operating temperature in the region of 150 °C dependant upon the ambient temperature. Location of the Regen inductors should be considered to prevent damage to heat sensitive components or create a fire risk.

Safety Product System Mechanical Getting UL Technical Electrical Component Introduction Optimization Parameters Diagnostics information Information design Installation Installation started Information data sizing

6 Electrical Installation

Many cable management features have been incorporated into the product and accessories, this chapter shows how to optimize them. Key features include:

- Internal EMC filter (MUST BE REMOVED)
- EMC compliance with shielding / grounding accessories
- Product rating, fusing and cabling information

STOP function

The STOP function does not remove dangerous voltages from the drive, the motor or any external option units.

Electric shock risk

The voltages present in the following locations can cause severe electric shock and may be lethal:

- AC supply cables and connections
- · DC connections
- · Output cables and connections
- Many internal parts of the drive, and external option units

Unless otherwise indicated, control terminals are single insulated and must not be touched.

Isolation device

The AC supply must be disconnected from the drive using an approved isolation device before any cover is removed from the drive or before any servicing work is performed.

Stored charge

The drive contains capacitors that remain charged to a potentially lethal voltage after the AC supply has been disconnected. If the drive has been energized, the AC supply must be isolated at least ten minutes before work may continue.

Normally, the capacitors are discharged by an internal resistor. Under certain, unusual fault conditions, it is possible that the capacitors may fail to discharge, or be prevented from being discharged by a voltage applied to the output terminals. If the drive has failed in a manner that causes the display to go blank immediately, it is possible the capacitors will not be discharged. In this case, consult the supplier of the drive or their authorised distributor.

Equipment supplied by plug and socket

Special attention must be given if the drive is installed in equipment which is connected to the AC supply by a plug and socket. The AC supply terminals of the drive are connected to the internal capacitors through rectifier diodes which are not intended to give safety isolation. If the plug terminals can be touched when the plug is disconnected from the socket, a means of automatically isolating the plug from the drive must be used (e.g. a latching relay).

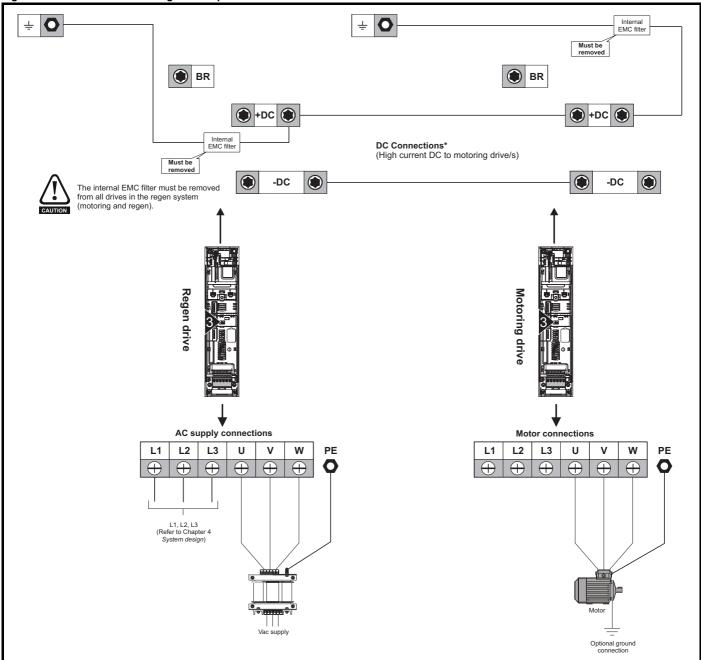
Permanent magnet motors

Permanent magnet motors generate electrical power if they are rotated, even when the supply to the drive is disconnected. If that happens then the drive will become energized through its motor terminals.

If the motor load is capable of rotating the motor when the supply is disconnected, then the motor must be isolated from the drive before gaining access to any live parts.

Safe Torque Off function

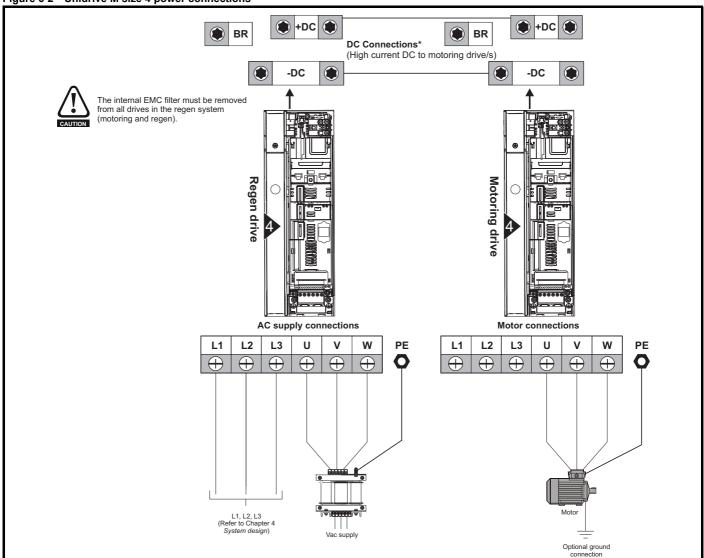
The Safe Torque Off function does not remove dangerous voltages from the drive, the motor or any external option units.


Fusing as specified must be provided.

information Information design Installation Installation started Installation data sizing Installation started Installation Installa	information		afety rmation	Introduction	Product Information	System design	Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	Information
--	-------------	--	------------------	--------------	------------------------	---------------	--------------	----------------------------	--------------------	--------------	------------	-------------------	------------------	-------------	-------------

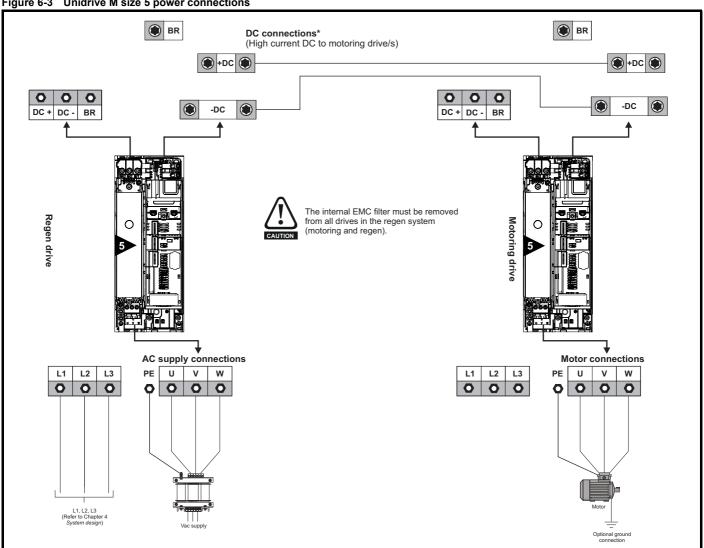
6.1 Power connections

6.1.1 AC and DC Regen connections

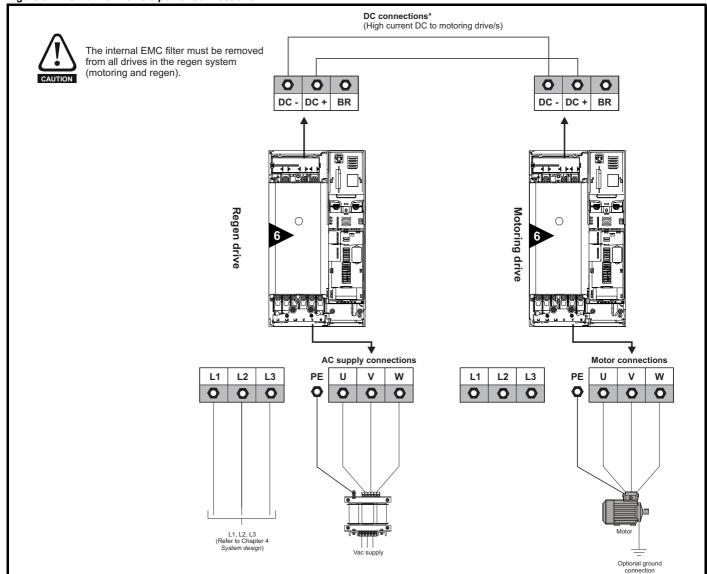

Figure 6-1 Unidrive M size 3 Regen drive power connections

^{*} It is possible to connect the DC bus of a number of drives using a busbar kit (part number: 3470-0048), where DC bus fusing is not required. See section 6.1.2 *Ground connections* on page 115.

Getting started Safety Component sizing UL Product System Mechanical Electrical Installation Technical Introduction Optimization Parameters Diagnostics information Information design Installation data Information

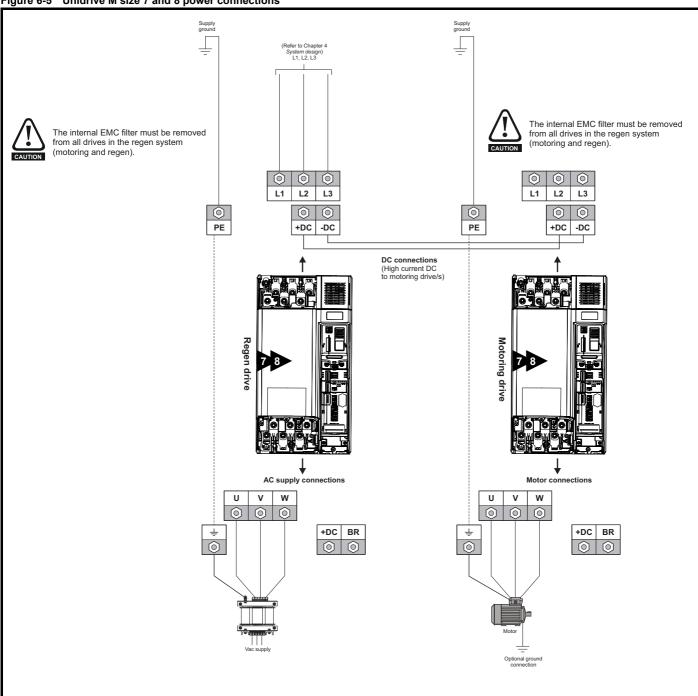

Figure 6-2 Unidrive M size 4 power connections

^{*} It is possible to connect the DC bus of a number of drives using a busbar kit (part number: 3470-0061), where DC bus fusing is not required. See section 6.1.2 *Ground connections* on page 115.

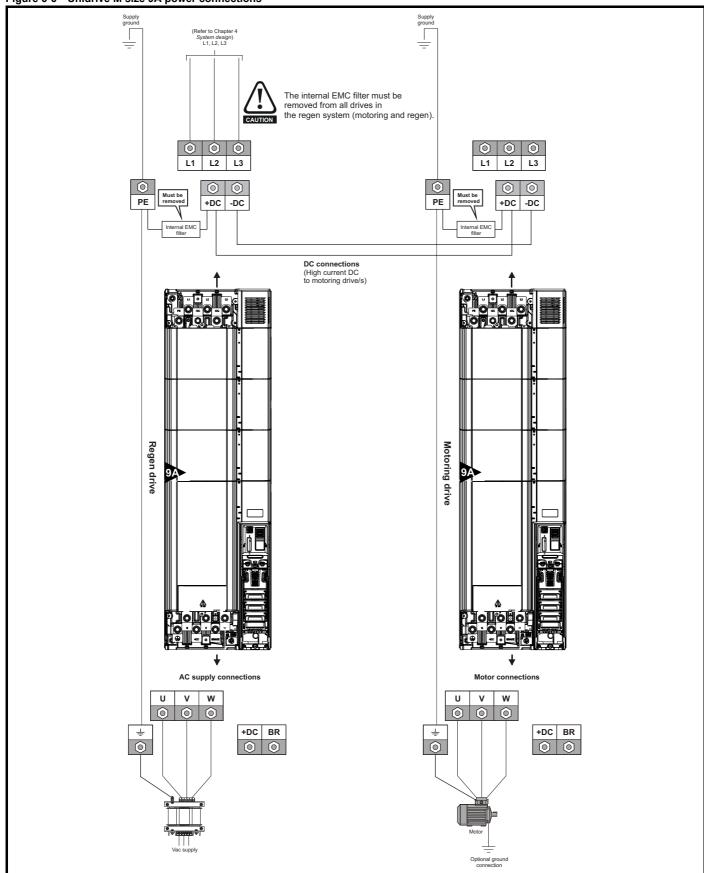

Figure 6-3 Unidrive M size 5 power connections

^{*} It is possible to connect the DC bus of a number of drives using a busbar kit (part number: 3470-0068), where DC bus fusing is not required. See section 6.1.2 Ground connections on page 115.

Electrical Installation Getting started Component sizing Safety UL Product System Mechanical Technical Parameters Introduction Optimization Diagnostics information Information design Installation data Information


Figure 6-4 Unidrive M size 6 power connections

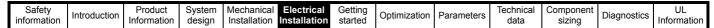
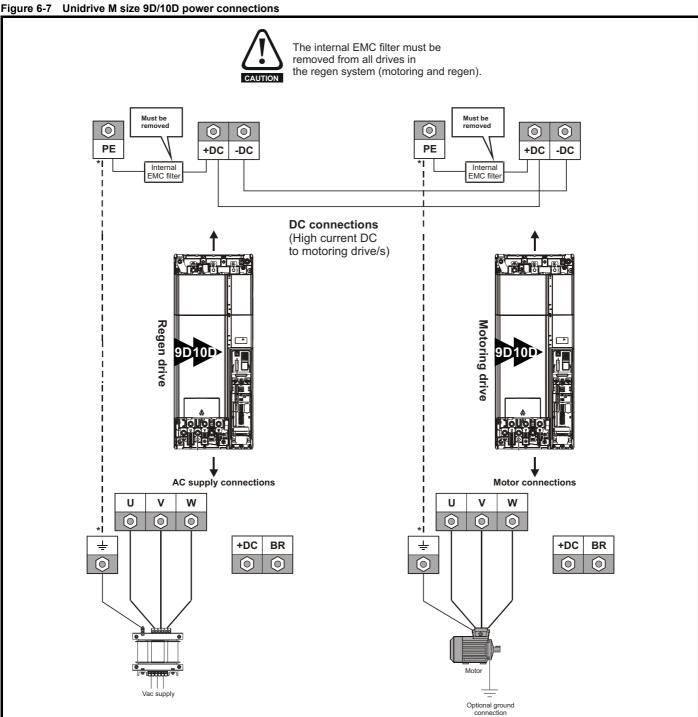
^{*} It is possible to connect the DC bus of a number of drives using a busbar kit (part number: 3470-0063), where DC bus fusing is not required. See section 6.1.2 *Ground connections* on page 115.

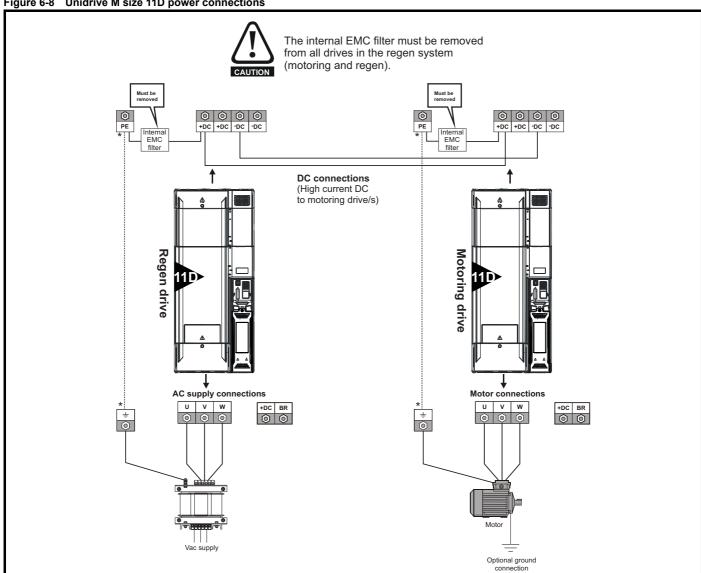

Figure 6-5 Unidrive M size 7 and 8 power connections

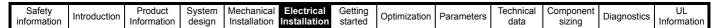
See section 6.1.2 Ground connections on page 115.

Figure 6-6 Unidrive M size 9A power connections

See section 6.1.2 Ground connections on page 115.


Figure 6-7


^{*} See section 6.1.2 Ground connections on page 115.

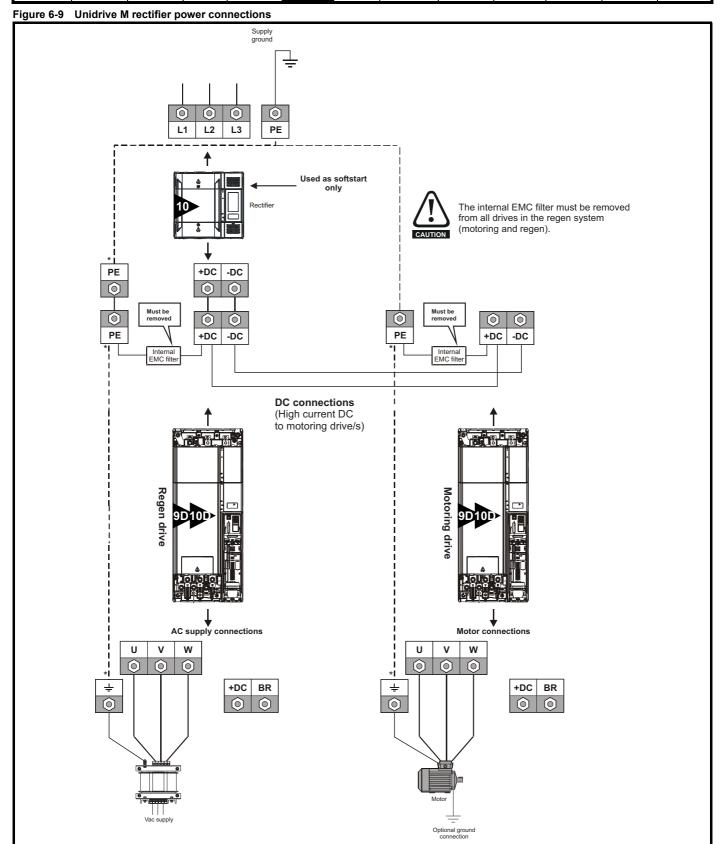

Safety Information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
--------------------	--------------	------------------------	---------------	----------------------------	----------------------------	--------------------	--------------	------------	----------------	------------------	-------------	-------------------

Figure 6-8 Unidrive M size 11D power connections

^{*} See section 6.1.2 Ground connections on page 115.

^{*} See section 6.1.2 Ground connections on page 115.

The user must provide a means of preventing live parts from being touched. A cover around the electrical connections at the top of the inverter and the bottom of the rectifier where the cables enter is required.

Safety Product System Mechanical Technical Component Electrical Introduction Optimization Parameters Diagnostics information Information design Installation Installation sizing Information data

6.1.2 **Ground connections**

Electrochemical corrosion of earthing terminals

Ensure that grounding terminals are protected against corrosion i.e. as could be caused by condensation.

The drives in the Regen system must be connected to the system ground of the AC power supply. The ground wiring must also conform to local regulations and codes of practice.

On size 3 and 4, the supply and motor ground connections are made using the M4 studs located either side of the drive near the plug-in power connectors. Refer to Figure 6-10 on page 115.

On size 5, the supply and motor ground connections are made using the M5 studs located near the plug-in power connector. See Figure 6-11 for

Size 6

On a size 6, the supply and motor ground connections are made using the M6 studs located above the supply and motor terminals. See Figure 6-12 for details.

Size 7 to 10

On size 7, the supply and motor ground connections are made using the M8 studs located by the supply and motor connection terminals.

On size 8 to 10, the supply and motor ground connections are made using the M10 studs located by the supply and motor connection terminals. See Figure 6-13.

Size 11D

On a Unidrive M 11D, the supply and motor ground connections are made using an M10 bolt at the top (supply) and bottom (motor) of the drive. See Figure 6-14.

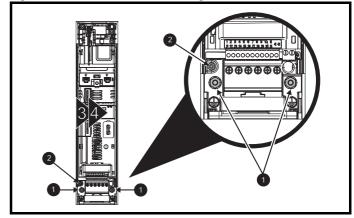
Rectifier

On a size 10 or 11 rectifier, the supply and DC bus ground connections are made using an M10 bolt at the top (supply) and bottom (DC bus) of the drive. See Figure 6-15 and Figure 6-16.

The supply ground and motor ground connections to the following drives are connected internally by a copper conductor with a cross-sectional area given below:

Frame size	Cable cross sectional area mm²
9A/9D/10D	46
Frame 10 rectifier	32
11D	42
Frame 11 rectifier (6 pulse)	64

If the necessary conditions are not met, an additional ground connection must be provided to link the motor circuit ground and the supply ground.



The ground loop impedance must conform to the requirements of local safety regulations.

The drive must be grounded by a connection capable of carrying the prospective fault current until the protective device (fuse, etc.) disconnects the AC supply.

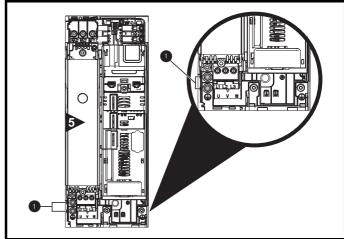
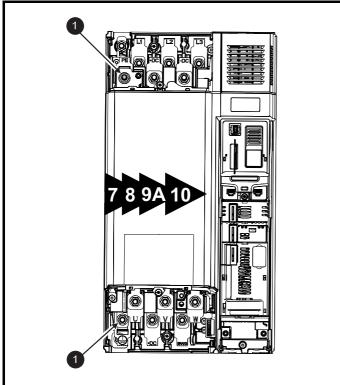

The ground connections must be inspected and tested at appropriate intervals.

Figure 6-10 Unidrive M size 3 and 4 ground connections

- 1. Ground connection studs.
- 2. Additional ground connection.

Figure 6-11 Unidrive M size 5 ground connections

1. Ground connection studs.


Figure 6-12 Unidrive M size 6 ground connections

Ground connection studs.

Figure 6-13 Unidrive M size 7 to 10 ground connections

1. Ground connection studs.

Figure 6-14 Unidrive M size 11D ground connections

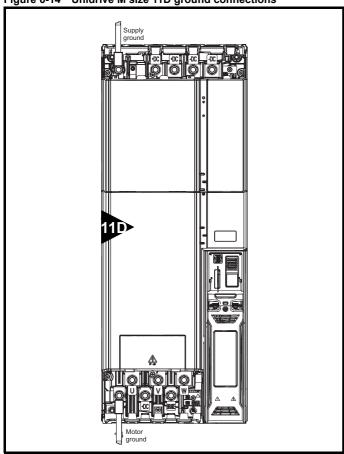


Figure 6-15 Unidrive M size 10 rectifier ground connections

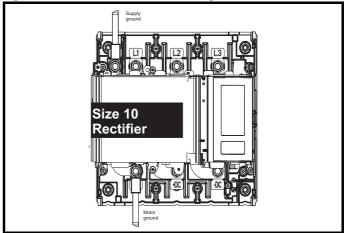
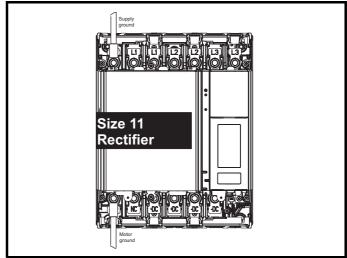



Figure 6-16 Unidrive M size 11 rectifier ground connections

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
--------------------	--------------	---------------------	---------------	----------------------------	----------------------------	-----------------	--------------	------------	----------------	------------------	-------------	-------------------

6.2 Supply requirements

Voltage:

200 V drive: 200 V to 240 V \pm 10% 400 V drive: 380 V to 480 V \pm 10% 575 V drive: 500 V to 575 V \pm 10% 690 V drive: 500 V to 690 V \pm 10%

Number of phases: 3

Maximum supply imbalance: 2 % negative phase sequence (equivalent to 3% voltage imbalance between phases).

Frequency range: 45 to 66 Hz

The maximum supply symmetrical fault current must be limited to 100 kA (also required for UL compliance).

6.2.1 Supply types

Drives rated for supply voltages up to 690 V are suitable for use with supply types with neutral or centre grounding i.e. TN-S, TN-C-S, TT.

The following supplies are not permitted with Unidrive M Regen

- 1. Corner grounded supplies (grounded Delta).
- 2. Ungrounded supplies (IT) > 575 V.

6.2.2 Other supplies

Wherever other equipment shares the same low voltage supply, i.e. 400 Vac, careful consideration must be given to the likely need for both switching frequency and EMC filters, as explained in section 6.5.10 *Switching frequency emission* and section 6.5.11 *Conducted and radiated RF emission* on page 132.

6.2.3 Supply voltage notching

Because of the use of input inductors and an active rectifier the drive causes no notching - but see section 6.5.10 *Switching frequency emission* on page 131 for advice on switching frequency emission.

6.2.4 Supply harmonics

When operated from a balanced sinusoidal three-phase supply, the regenerative Unidrive M generates minimal harmonic current.

Imbalance between phase voltages will cause the drive to generate some harmonic current. Existing voltage harmonics on the power system will cause some harmonic current to flow from the supply into the drive.

If the harmonic distortion of the supply is high for extended periods then this can cause a reduction of the service life of the switching frequency filter capacitors. The effect of this is to reduce the capacitance value. If high levels of harmonic distortion are expected then it is recommended that the capacitance values be checked periodically, and capacitors which have fallen outside of their tolerance range be replaced.

NOTE

This latter effect is not an emission, but it may be difficult to distinguish between incoming and outgoing harmonic current in a site measurement unless accurate phase angle data is available for the harmonics. No general rule can be given for these effects, but the generated harmonic current levels will always be small compared with those caused by a conventional drive with rectifier input.

6.3 Cable and fuse ratings

The input current is affected by the supply voltage and impedance.

Typical input current

The values of typical input current are given to aid calculations for power flow and power loss.

The values of typical input current are stated for a balanced supply.

Maximum continuous input current

The values of maximum continuous input current are given to aid the selection of cables and fuses. These values are stated for the worst case condition with the unusual combination of stiff supply with bad balance. The value stated for the maximum continuous input current would only be seen in one of the input phases. The current in the other two phases would be significantly lower.

The values of maximum input current are stated for a supply with a 2 % negative phase-sequence imbalance and rated at the maximum supply fault current given in Table 6-2 to Table 6-5.

The nominal cable sizes given in this section are only a guide. Refer to local wiring regulations for the correct size of cables. In some cases a larger cable is required to avoid excessive voltage drop.

NOTE

The nominal output cable sizes in this section assume that the motor maximum current matches that of the drive. Where a motor of reduced rating is used the cable rating may be chosen to match that of the motor. To ensure that the motor and cable are protected against over-load, the drive must be programmed with the correct motor rated current.

Fuse protection is required in the following Regen systems:

- 1. Single Regen, multiple motoring drives
- 2. Multiple Regen, multiple motoring drives
- 3. Unidrive M Regen brake resistor replacement
- 4. Regen systems using a Unidrive M rectifier

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information	I
--------------------	--------------	---------------------	---------------	----------------------------	----------------------------	-----------------	--------------	------------	-------------------	------------------	-------------	-------------------	---

Fuse protection required could range from AC supply fusing to DC bus fusing (some systems requiring both AC and DC fusing) for protection of both the Regen and motoring drives along with the Unidrive M rectifier module. For further information on the fusing required for the above systems refer to section 4 *System design* on page 40.

Table 6-1 Supply fault current used to calculate maximum input currents

Model	Symmetrical fault level (kA)
All	100

6.3.1 Unidrive M AC fusing and cable size ratings

Fuses

The AC supply to the drive must be installed with suitable protection against overload and short-circuits. Table 6-2 to Table 6-5 show recommended fuse ratings. Failure to observe this requirement will cause risk of fire.

Table 6-2 AC Input current and fuse ratings (200 V)

		Maximum	Maximum			Fuse	rating		
Madal	Typical input current	continuous	overload input		IEC			UL / USA	
Model	current	input current	current	Nominal	Maximum	Class	Nominal	Maximum	Class
	Α	Α	Α	Α	Α	Class	Α	Α	Class
03200066	9.9	12.6	20.9	20			20		CC 1
03200080	14	17	25	20	25	gG	25	25	CC, J or T*
03200106	16	20	34	25			25		01 1
04200137	17	20	30	25	25	aG.	25	25	CC, J
04200185	23	28	41	32	32	gG	30	30	or T*
05200250	24	31	52	40	40	gG	40	40	CC, J or T*
06200330	42	48	64	63	63	~C	60	60	CC, J
06200440	49	56	85	03	63	gG	60	60	or T*
07200610	58	67	109	80	80		80	80	00.1
07200750	73	84	135	100	100	gG	100	100	CC, J or T*
07200830	91	105	149	125	125		125	125	01 1
08201160	123	137	213	200	200	αD	200	200	HSJ
08201320	149	166	243	200	200	gR	225	225	ПОЈ
09201760	172	205	270	250	250	αD	250	250	HSJ
09202190	228	260	319	315	315	gR	300	300	1100
10202830	277	305	421	400	400	gR	400	400	HSJ
10203000	333	361	494	450	450	уĸ	450	450	1133

^{*} These fuses are fast acting.

		1										
Safet informat	on Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information

Table 6-3 AC Input current and fuse ratings (400 V)

		Maximum	Maximum			Fuse	rating		
Model	Typical input current	continuous	overload input		IEC			UL / USA	
Wodei	Current	input current	current	Nominal	Maximum	0.	Nominal	Maximum	0.
	Α	Α	Α	Α	Α	Class	Α	Α	Class
03400078	12	13	20	20	20	gG	20	20	CC, J
03400100	14	16	25	20	20	yG	20	20	or T*
04400150	17	19	30	25	25	gG	25	25	CC, J
04400172	22	24	35	32	32	yG	30	30	or T*
05400270	26	29	52	40	40	gG	35	35	CC, J
05400300	27	30	58	40	40	yG	33	35	or T*
06400350	32	36	67				40		00.1
06400420	41	46	80	63	63	gR	50	60	CC, J or T*
06400470	54	60	90				60		01 1
07400660	67	74	124	100	100		80	80	00.1
07400770	80	88	145	100	100	gG	100	100	CC, J or T*
07401000	96	105	188	125	125		125	125	01 1
08401340	137	155	267	250	250	gR	225	225	HSJ
08401570	164	177	303	250	250	gr.	223	225	1100
09402000	211	232	306	315	315	gR	300	300	HSJ
09402240	245	267	359	313	313	gr.	350	350	1100
10402700	306	332	445	400	400	αD	400	400	HSJ
10403200	370	397	523	450	450	gR	450	450	ПОЈ
11403770	424	449	579	500	500				
11404170	455	492	613	300	500	gR	600	600	HSJ
11404640	502	539	752	550	550				

^{*} These fuses are fast acting.

Table 6-4 AC Input current and fuse ratings (575 V)

		Maximum	Maximum			Fuse	rating		
Model	Typical input current	continuous	overload input		IEC			UL / USA	
wodei	Current	input current	current	Nominal	Maximum	Class	Nominal	Maximum	Olas
	Α	Α	Α	Α	Α	Class	Α	Α	Class
06500150	17	19	33	32	40		25	30	
06500190	22	24	41	40	40		30	30	00
06500230	26	29	50	50		gG	35		CC, or T
06500290	33	37	63	50	63		40	50	OI I
06500350	41	47	76	63			50		
07500440	41	45	75	50	50	0	50	50	CC,
07500550	57	62	94	80	80	gG	80	80	or T
08500630	74	83	121	125	125	~D	100	100	шс
08500860	92	104	165	160	160	gR	150	150	HSJ
09501040	145	166	190	150	150	~D	150	150	шс
09501310	145	166	221	200	200	gR	175	175	HSJ
10501520	177	197	266	250	250	«D	250	250	HSJ
10501900	199	218	310	250	250	gR	250	250	нэл
11502000	240	265	327						
11502540	285	310	395	400	400	gR	400	400	HSJ
11502850	313	338	473						

^{*} These fuses are fast acting.

Safety	Introduction	Product	System	Mechanical	Electrical	Getting	Optimization	Parameters	Technical	Component	Diagnostics	UL
informatio	n illiloddciioil	Information	design	Installation	Installation	started	Optimization	Farameters	data	sizing	Diagnostics	Information

Table 6-5 AC Input current and fuse ratings (690 V)

		Maximum	Maximum			Fuse	rating		
Model	Typical input current	continuous	overload input		IEC			UL / USA	
Model	Garron	input current	current	Nominal	Maximum		Nominal	Maximum	01
	Α	Α	Α	Α	Α	Class	Α	Α	Class
07600190	18	20	32	25			25		
07600240	23	26	41	32	50		30	50	
07600290	28	31	49	40	50	aC.	35	50	CC, J
07600380	36	39	65	50		gG	50		or T*
07600440	40	44	75	30	80	İ	30	80	
07600540	57	62	92	80	80		80	- 60	
08600630	74	83	121	125	125	gR	100	100	HSJ
08600860	92	104	165	160	160	gr.	150	150	1100
09601040	124	149	194	150	150	αD	150	150	HSJ
09601310	145	171	226	200	200	gR	200	200	ПОЈ
10601500	180	202	268	225	225	gR	250	250	HSJ
10601780	202	225	313	250	250	gR	250	250	пол
11602100	225	256	379						
11602380	271	302	425	400	400	gR	400	400	HSJ
11602630	298	329	465						

^{*} These fuses are fast acting.

Table 6-6 Unidrive M Rectifier AC Input current and fuse ratings

	Typical input	Maximum continuous	Maximum overload input			Fuse	rating		
Model	current	input current	current		IEC			UL/USA	
				Nominal	Maximum	Class	Nominal	Maximum	Class
	Α	Α	Α	Α	Α	Class	Α	Α	Class
10204100	333	361	494	450	450		450	450	
10404520	370	396	523	450	450	αĐ	450	450	HSJ
10502430	202	218	313	250	250	gR	250	250	ПОЈ
10602480	202	225	313	250	250		250	250	
11406840	557	594	752	630	630		600	600	
11503840	313	338	473	400	400		400	400	
11604060	331	362	465	400	400	gR	400	400	HSJ
1142X400*	2 x 326	2 x 358	2 x 516	400	400		400	400	
1162X380*	2 x 308	2 x 339	2 x 488	400	400		400	400	

^{*} Twin rectifier

NOTE

Ensure cables used suit local wiring regulations.

The nominal cable sizes below are only a guide. The mounting and grouping of cables affects their current-carrying capacity, in some cases smaller cables may be acceptable but in other cases a larger cable is required to avoid excessive temperature or voltage drop. Refer to local wiring regulations for the correct size of cables.

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
--------------------	--------------	---------------------	---------------	----------------------------	----------------------------	-----------------	--------------	------------	----------------	------------------	-------------	-------------------

Table 6-7 AC cable ratings (200 V)

			Cable size	(IEC) mm ²				Cable size	(UL) AWG	
Model		Input			Output		Inp	out	Out	put
	Nominal	Max	Install method	Nominal	Max	Install method	Nominal	Max	Nominal	Max
03200066	1.5			1.5			14		14	
03200080	4	4	B2	4	4	B2	12	10	12	10
03200106	7 4			4			12		12	
04200137	6	8	B2	6	8	B2	10	8	10	8
04200185	8	O	62	8	0	62	8	0	8	O
05200250	10	10	B2	10	10	B2	8	8	8	8
06200330	16	25	B2	16	25	B2	4	3	4	3
06200440	25	23	62	25	25	62	3	3	3	3
07200610	35			35			2		2	
07200750		70	B2	33	70	B2	1	1/0	1	1/0
07200830	70			70			1/0		1/0	
08201160	95	2 x 70	B2	95	2 x 70	B2	3/0	2 x 1	3/0	2 x 1
08201320	2 x 70	2 X 7 0	62	2 x 70	2 X 7 0	62	2 x 1	2 X I	2 x 1	2 X I
09201760	2 x 70	2 x 185	B1	2 x 95	2 x 150	B2	2 x 2/0	2 x 500	2 x 2/0	2 x 350
09202190	2 x 95	2 x 185	וטו	2 x 120	2 x 150	1 52	2 x 4/0	2 x 500	2 x 4/0	2 x 350
10202830	2 x 120	2 x 185	B1	2 x 120	2 x 150	С	2 x 250	2 x 500	2 x 250	2 x 350
10203000	2 x 150	2 x 185	С	2 x 120	2 x 150		2 x 300	2 x 500	2 x 250	2 x 350

Table 6-8 AC cable ratings (400 V)

				ize (IEC) m ²					size (UL) NG	
Model		Input			Output		Inp	out	Out	put
	Nominal	Max	Install method	Nominal	Max	Install method	Nominal	Max	Nominal	Max
03400078	2.5	4	B2	2.5	4	B2	14	10	14	10
03400100	2.5	7	DZ	2.0	7	D2	12	10	12	10
04400150	4	6	B2	4	6	B2	10	8	10	. 8
04400172	6	U	52	6	O	62	8	O	8	. 0
05400270	6	6	B2	6	6	B2	8	8	8	8
05400300	0	O	DZ	0	O	DZ	0	0	0	0
06400350	10			10			6		6	
06400420	16	25	B2	16	25	B2	4	3	4	3
06400470	25			25			3		3	
07400660	35			35			1		1	
07400770	50	70	B2	50	70	B2	2	1/0	2	1/0
07401000	70			70			1/0		1/0	
08401340	2 x 50	0 70	DO	2 x 50	0 70	DO	2 x 1	0 4/0	2 x 1	0 4/0
08401570	2 x 70	2 x 70	B2	2 x 70	2 x 70	B2	2 x 1/0	2 x 1/0	2 x 1/0	2 x 1/0
09402000	2 x 70	2 x 185	B1	2 x 95	2 x 150	B2	2 x 3/0	2 x 500	2 x 2/0	2 x 350
09402240	2 x 95	2 x 185	БІ	2 x 120	2 x 150	DZ	2 x 4/0	2 x 500	2 x 4/0	2 x 350
10402700	2 x 120	2 x 185	С	2 x 120	2 x 150	С	2 x 300	2 x 500	2 x 250	2 x 350
10403200	2 x 150	2 x 185	C	2 x 150	2 x 150		2 x 350	2 x 500	2 x 300	2 x 350
11403770				2 x	185		4 x	3/0		
11404170	4 x	95	С	2 x	240	С	4 x	4/0	2 x	400
11404640				2 x	240	1	4 x	4/0		

Safoty		Droduct	Syctom	Mechanical	Electrical	Getting			Technical	Component		111
Safety information Into	troduction	Product Information	System design		Installation	started	Optimization	Parameters	data	sizina	Diagnostics	Information

Table 6-9 AC cable ratings (575 V)

				ize (IEC) m ²					size (UL) VG	
Model		Input			Output		In	out	Out	tput
	Nominal	Max	Install method	Nominal	Max	Install method	Nominal	Max	Nominal	Max
06500150	4			4			10		10	
06500190	6			6			10		10	
06500230	10	25	B2		25	B2	8	3	8	3
06500290	10			10			6		6	
06500350	16						6		6	
07500440	16	25	B2	16	25	B2	4	3	4	3
07500550	25	25	DZ	25	25	DZ	3	3	3	3
08500630	35	50	B2	35	50	B2	1	1	1	1
08500860	50	30	DZ	50	30	DZ	'	ı	'	'
09501040	2 x 70	2 x 185	B2	2 x 35	2 x 150	B2	2 x 1	2 x 500	2 x 3	2 x 350
09501310	2 x 70	2 x 185	DZ	2 x 50	2 x 150	DZ	2 x 1	2 x 500	2 x 1	2 x 350
10501520	2 x 70	2 x 185	B2	2 x 70	2 x 150	B2	2 x 2/0	2 x 500	2 x 2/0	2 x 350
10501900	2 x 95	2 x 185	DΖ	2 x 70	2 x 150	DΖ	2 x 2/0	2 x 500	2 x 2/0	2 x 350
11502000	2 x	70		2 x	70		2 x	3/0	2 x	3/0
11502540	2 x	95	С	2 x	95	С	2 x	4/0	2 x	4/0
11502850	2 x	120		2 x	120		2 x	250	2 x	250

Table 6-10 AC cable ratings (690 V)

				ize (IEC) m ²					size (UL) or Kcmil	
Model		Input			Output		Inj	out	Out	put
	Nominal	Max	Install method	Nominal	Max	Install method	Nominal	Max	Nominal	Max
07600190							8		8	
07600240	10			10			6		6	
07600290		25	B2		25	B2	6	3	6	3
07600380	16	25	DZ	16	25	DZ	4	3	4	3
07600440	16			16			4		4	
07600540	25			25			3		3	
08600630	50	70	DO	50	70	DO	2	4.00	2	1/0
08600860	70	70	B2	70	70	B2	1/0	1/0	1/0	1/0
09601040	2 x 50	2 x 185	B2	2 x 35	2 x 150	B2	2 x 1	2 x 500	2 x 3	2 x 350
09601310	2 x 70	2 x 185	DZ	2 x 50	2 x 150	DZ	2 x 1/0	2 x 500	2 x 1	2 x 350
10601500	2 x 70	2 x 185	B2	2 x 70	2 x 150	B2	2 x 2/0	2 x 500	2 x 1/0	2 x 350
10601780	2 x 95	2 x 185	DZ	2 x 70	2 x 150	DZ	2 x 3/0	2 x 500	2 x 2/0	2 x 350
11602100	2 x	70		2 x	70		2 x	3/0	2 x	3/0
11602380	2 x	95	С	2 x	95	С	2 x	4/0	2 x	4/0
11602630	2 x	95		2 x	95		2 x	250	2 x	250

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
--------------------	--------------	---------------------	---------------	----------------------------	----------------------------	-----------------	--------------	------------	-------------------	------------------	-------------	-------------------

Table 6-11 Unidrive M Rectifier AC cable ratings

		Cable size (IEC)		Cable s	size (UL)
Model		mm ²		AWG o	or kcmil
Woder		Input		In	put
	Nominal	Maximum	Installation method	Nominal	Maximum
10204100	2 x 150	2 x 185	С	2 x 300	2 x 500
10404520	2 x 150	2 x 185	С	2 x 350	2 x 500
10502430	2 x 95	2 x 185	B2	2 x 3/0	2 x 500
10602480	2 x 95	2 x 185	B2	2 x 3/0	2 x 500
11406840	4 x 120	4 x 120	С	2 x 250	2 x 250
11503840	2 x 120	2 x 120	С	2 x	250
11604060	2 x 120	2 x 120	С	2 x 300	2 x 300
1142X400*	2 x 2 x120	2 x 2 x120	С	2 x 2	x 300
1162X380*	2 x 2 x120	2 x 2 x120	С	2 x 2	x 300

^{*} Twin rectifier

NOTE

Cable sizes are from IEC60364-5-52:2001 table A.52.C with correction factor for 40 °C ambient of 0.87 (from table A52.14) for cable installation method B2 (multicore cable in conduit).

Cable size may be reduced if a different installation method is used, or if the ambient temperature is lower.

NOTE

The cable sizes noted in Table 6-7 to Table 6-10 are typical cable sizes based on UL508C and IEC60364-5-52:2001. Maximum cable sizes for size 11 are $2 \times 240 \text{ mm}^2$ or $2 \times 400 \text{ kcmil}$ per pole. The user will have to decide what size of cable to use in any given application based on the local wiring regulations. Use of high temperature cables that are thinner than those stated in the typical cable chart maybe possible, contact the supplier of the drive for advice.

Installation method (ref:IEC60364-5-52:2001)

B1 - Separate cables in conduit

B2 - Multicore cable in conduit

C - Multicore cable in free air

A fuse or other protection must be included in all live connections to the AC supply.

Fuse types

The fuse voltage rating must be suitable for the drive supply voltage.

IEC Fuse types

- · IEC class gG Full range breaking capability in general application. Slow acting.
- · IEC class gR Dual rated: semiconductor protection (ultra-fast acting) and cable protection.
- IEC class aR Semiconductor Protection, fast acting. Provides no protection from slow, small overloads, so cable must be protected by using a gG fuse or circuit breaker.
- HRC- High Rupturing Capacity Denotes the ability of the fuse link to interrupt extremely high fault currents.

North American Fuse Types

UL class J - Full range breaking capability in general application. Slow acting. Up to 600 V only.

Ferraz HSJ -High speed class J fuses. Dual rated: semiconductor protection (ultra-fast acting) and cable protection. Up to 600 V only and only from Ferraz.

6.3.2 Unidrive M DC fusing and cable size ratings

DC bus fusing is required in the following systems for both the Regen and motoring drives, and the rectifier if used as the external soft start circuit.

- 1. Single Regen, multiple motoring drives
- 2. Multiple Regen, multiple motoring drives
- 3. Unidrive M Regen brake resistor replacement
- 4. Regen systems using a rectifier

DC bus fuses as detailed following, must be installed in both the positive and negative branches of DC bus connections to each of the Regen and motoring drives, and the rectifier if used as the external soft start circuit.

NOTE

Ferraz have a range of DC fuses which could be used to provide the required protection, types (00 and 21) may be used.

- 00 Fuse with no trip indicator installed
- 21 Fuse installed with trip indicator

NOTE

The DC bus voltage set-point on a 400 V Regen system (default) is set to 700 Vdc, this can be up to a maximum 800 Vdc. Therefore ensure the selected DC bus fusing is of the correct voltage rating with regards to the DC bus voltage level (Pr **03.005** DC bus voltage set-point).

Safetv		Product	Svstem	Mechanical	Electrical	Gettina		_	Technical	Component		UL
Calcty	Introduction	1 100000	Cycloni	wiconamoar	Liooti ioai	Cottinig	Optimization	Parameters	roommoan	Component	Diagnostics	0_
information	IIIIIOddction	Information	desian	Installation	Installation	started	Optimization	i didilicicio	data	sizina	Diagnostics	Information
iiiioiiiiatioii		miomiation	acsign	motanation	motanation	Started			data	3121119		momation

Table 6-12 DC current, fuse and cable ratings (200 V)

	Maximum	Maximum	DC fuse IEC	Maximum fuse	Inverter	Ca	ble size DC	Input
Model	continuous dc input current (Arms)	overload dc input current (Arms)	class aR (Arms)	clearing l ² t at operating condition (A ² s)	DC voltage trip threshold	mm²	AWG or Kcmil	IEC Installation Method
03200066	13.3	20.9	16	190	415	4	12	B2
03200080	18.4	25.3	25	480	415	6	10	B2
03200106	21.2	33.5	25	480	415	8	8	B2
04200137	21.2	30.3	25	480	415	8	8	B2
04200185	29.4	40.9	32	1500	415	10	8	B2
05200250	32.6	52.0	40	1500	415	10	8	B2
06200330	53.1	63.8	63	3080	415	16	4	B2
06200440	61.6	85.0	63	3080	415	35	2	B2
07200610	73.8	109.5	80	6600	415	35	1	B2
07200750	92.4	134.6	100	12500	415	35	1	B2
07200830	115.1	148.9	125	12500	415	70	1/0	B2
08201160	153.4	213.6	160	16700	415	2 x 50	2 x 1	B2
08201320	185.3	243.0	200	22000	415	2 x 70	2 x 1/0	B2
09201760A	220	300	315		415	2 x 70	2 x 2/0	B1
09202190A	287	359	350	330000	415	2 x 95	2 x 4/0	B1
09201760D	220	300	315	330000	415	2 x 70	2 x 2/0	B1
09202190D	287	359	350		415	2 x 95	2 x 4/0	B1
10202830	345	488	450	330000	415	2 x 120	2 x 250	B1
10203000	413	578	500	330000	415	2 x 150	2 x 300	С

Table 6-13 DC current, fuse and cable ratings (400 V)

	Maximum	Maximum	DC fuse IEC	Maximum fuse	Inverter DC	Cab	le Size DC li	nput
Model	continuous dc input current (Arms)	overload dc input current (Arms)	class aR (Arms)	clearing l²t at operating condition (A²s)	voltage trip threshold	mm²	AWG or Kcmil	IEC Installation Method
03400078	14.5	19.7	16	190	830	4	12	B2
03400100	17.2	25.3	20	360	830	6	10	B2
04400150	21.1	30.4	25	480	830	8	8	B2
04400172	27.3	34.8	32	1500	830	10	8	B2
05400270	32.8	52.1	40	1500	830	10	8	B2
05400300	33.9	57.9	40	1500	830	10	8	B2
06400350	40.5	66.7	63	3080	830	10	6	B2
06400420	51.2	80.0	63	3080	830	16	4	B2
06400470	73.8	109.5	80	6600	830	35	1	B2
07400660	92.4	134.6	100	12500	830	35	1	B2
07400770	92.4	134.6	100	12500	830	35	1	B2
07401000	118.4	187.9	125	12500	830	70	1/0	B2
08401340	171.6	267.4	200	22000	830	2 x 70	2 x 1/0	B2
08401570	199.2	302.6	200	22000	830	2 x 70	2 x 2/0	B1
09402000A	261	351	315		830	2 x 70	2 x 3/0	B1
09402240A	303	418	400	330000	830	2 x 95	2 x 4/0	B1
09402000D	261	351	315	330000	830	2 x 70	2 x 3/0	B1
09402240D	303	418	400	1	830	2 x 95	2 x 4/0	B1
10402700	378	517	450	330000	830	2 x 120	2 x 300	С
10403200	456	614	500	330000	830	2 x 150	2 x 350	С
11403770	525	711	630		830	4 x 95	4 x 250	С
11404170	564	753	700	594000	830	4 x 95	4 x 250	С
11404640	621	925	700	1	830	4 x 120	4 x 300	С

		1										
Safet informat	on Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information

Table 6-14 DC current, fuse and cable ratings (575 V)

	Maximum	Maximum	DC fuse IEC	Maximum fuse	Inverter DC	Cab	le Size DC Ir	nput
Model	continuous dc input current (Arms)	overload dc input current (Arms)	class aR (Arms)	clearing l²t at operating condition (A²s)	voltage trip threshold	mm²	AWG or Kcmil	IEC Installation Method
06500150	20.5	32.8	25	480	990	6	10	B2
06500190	26.6	41.5	32	1500	990	10	8	B2
06500230	32.2	49.8	40	1500	990	10	8	B2
06500290	40.6	62.7	63	3080	990	10	6	B2
06500350	51.4	75.7	63	3080	990	16	4	B2
07500440	51.1	75.0	63	3080	990	16	4	B2
07500550	73.8	109.5	80	6600	990	35	1	B2
08500630	92.4	134.6	100	12500	990	35	1	B2
08500860	115.3	165.2	125	12500	990	70	2 x 1/0	B2
09501040	181	212	250	137000	990	2 x 70	2 x 1	B2
09501310	181	248	250	137000	990	2 x 70	2 x 1	B2
10501520	220	306	315	137000	990	2 x 70	2 x 2/0	B2
10501900	246	360	315	137000	990	2 x 95	2 x 2/0	B2
11502000	299	402	350		990	2 x 70	2 x 4/0	С
11502540	353	485	450	330000	990	2 x 95	2 x 250	С
11502850	387	583	500		990	2 x 120	2 x 300	С

Table 6-15 DC current, fuse and cable ratings (690 V)

	Maximum	Maximum	DC fuse IEC	Maximum fuse	Inverter DC	Cab	le Size DC Ir	nput
Model	continuous dc input current (Arms)	overload dc input current (Arms)	class aR (Arms)	clearing I²t at operating condition (A²s)	voltage trip threshold	mm²	AWG or Kcmil	IEC Installation Method
07600190	22.2	32.4	25	480	1190	10	8	B2
07600240	28.9	40.9	32	1500	1190	10	8	B2
07600290	34.7	49.4	40	1500	1190	10	8	B2
07600380	44.4	64.8	50	3080	1190	16	4	B2
07600440	50.2	75.0	63	3080	1190	16	4	B2
07600540	70.4	92.1	80	6600	1190	35	1	B2
08600630	91.8	121.0	100	12500	1190	35	1	B2
08600860	115.3	165.2	125	12500	1190	70	2 x 1/0	B2
09601040	158	211	200	137000	1190	2 x 50	2 x 1	B2
09601310	183	252	250	137000	1190	2 x 70	2 x 1/0	B2
10601500	223	303	315	137000	1190	2 x 70	2 x 2/0	B2
10601780	252	359	315	137000	1190	2 x 95	2 x 3/0	B2
11602100	282	466	400		1190	2 x 70	2 x 4/0	С
11602380	332	522	450	330000	1190	2 X 95	2 X 250	С
11602630	371	573	500	1	1190	2 X 120	2 X 300	С

Table 6-16 Unidrive M Rectifier DC current, fuse and cable size ratings

			Typic	cal cable size	(IEC)	Typical cal	ole size (UL)	
	Maximum continuous	DC fuse IEC		mm²	AWG or kcmil			
Model	DC output current	class aR		DC output		DC output		
	(A)	(A)	Nominal	Maximum	Installation method	Nominal	Maximum	
10204100	413	500	2 x 120	2 x 150	С	2 X 400	2 X 500	
10404520	455	500	2 X 150	2 X 150	С	2 X 500	2 X 500	
10502430	246	315	2 X 95	2 X 150	B2	2 X 3/0	2 X 500	
10602480	251	315	2 X 95	2 X 150	B2	2 X 3/0	2 X 500	
11406840	689	800	4 X 150	4 X 150	С	2 X 300	2 X 300	
11503840	387	500	2 X 120	2 X 120	С	2 X	250	
11604060	411	500	2 X 120	2 X 120	С	2 X	400	
1142X400*	2 x 400	2 x 450	2 X 2 X 120	2 X 2 X 120	С	2 X2	X 300	
1162X380*	2 x 380	2 x 500	2 X 2 X 120	2 X 2 X 120	С	2 X 2	X 300	

^{*} Twin rectifier

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
										,		

NOTE

The DC fuse voltage rating must be suitable for the drive's DC bus voltage range.

Ground connections

The drive must be connected to the system ground of the AC supply. The ground wiring must conform to local regulations and codes of practice.

6.3.3 Main AC supply contactor

The recommended AC supply contactor type is AC1.

6.3.4 Motor winding voltage

Refer to the guidelines given in the relevant *Unidrive M Power Installation Guide*. The DC bus voltage in a Regen system with a 400 V supply is usually 700V, which corresponds to an AC supply voltage of 519 V. Unless the motor cable is less than 10 m long it is recommended that either an inverter-grade motor should be used or else output chokes should be fitted to protect the motor from the effect of the fast-rising output voltage pulses.

6.3.5 Use of residual current device (RCD)

There are three common types of ELCB / RCD:

- 1. AC detects AC fault currents
- 2. A detects AC and pulsating DC fault currents (provided the DC current reaches zero at least once every half cycle)
- 3. B detects AC, pulsating DC and smooth DC fault currents
 - · Type AC should never be used with drives.
 - Type A can only be used with single phase drives
 - · Type B must be used with three phase drives

Only type B ELCB / RCD are suitable for use with 3-phase inverter drives.

If an external EMC filter is used with an ELCB / RCD, a delay of at least 50 ms should be incorporated to ensure spurious trips are not seen. The leakage current is likely to exceed the trip level if all of the phases are not energized simultaneously.

6.4 EMC (Electromagnetic compatibility)

The requirements for EMC are divided into three levels in the following three sections:

- section 6.5.2, General requirements for EMC, this is for all applications, to ensure reliable operation of the drive and minimise the risk of
 disturbing nearby equipment. The immunity standards specified in section 10.5 Electromagnetic compatibility (EMC) on page 303 will be met, but
 no specific emission standards are applied.
- section 6.5.3, Requirements for meeting the EMC standard for power drive systems, IEC61800-3 (EN 61800-3:2004+A1:2012).
- section 6.5.4, Requirements for meeting the generic emission standards for the industrial environment, IEC61000-6-4, EN 61000-6-4:2007+A1:2011.

The recommendations of section 6.5.2 *General requirements for EMC* on page 130 will usually be sufficient to avoid causing disturbance to adjacent equipment of industrial quality. If particularly sensitive equipment is to be used nearby, or in a non-industrial environment, then the recommendations of section 6.5.3 or section 6.5.4 should be followed to give reduced radio-frequency emission.

In order to ensure the installation meets the various emission standards described in:

- The EMC data sheet available from the supplier of the drive
- The Declaration of Conformity at the front of this manual
- · Chapter 10 Technical data on page 276

The correct external EMC filter must be used and all of the guidelines in section 6.5.2 *General requirements for EMC* on page 130 and section 6.5.4 *Compliance with generic emission standards* on page 131 must be followed.

126

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
--------------------	--------------	---------------------	---------------	----------------------------	----------------------------	--------------------	--------------	------------	-------------------	------------------	-------------	-------------------

Table 6-17 Drive and EMC filter cross reference

Model	Part number
200 V	
03200066 to 03200106	4200-3230
04200137 to 04200185	4200-0272
05200250	4200-0312
06200330 to 06200440	4200-2300
07200610 to 07200830	4200-1132
08201160 to 08201320	4200-1972
09201760 to 09202190 (9A)	4200-3021
10202830 to 10203000	4200-4460
400 V	
03400078 to 03400100	4200-3480
04400150 to 04400172	4200-0252
05400270 to 05400300	4200-0402
06400350 to 06400470	4200-4800
07400660 to 07401000	4200-1132
08401340 to 08401570	4200-1972
09402000 to 09402240 (9A)	4200-3021
10402700 to 10403200	4200-4460
11403770 to 11404640	4200-0400
575 V	
06500150 to 06500350	4200-3690
07500440 to 07500550	4200-0672
08500630 to 08500860	4200-1662
09501040 to 09501310 (9A)	4200-1660
10501520 to 10501900	4200-2210
11502000 to 11502850	4200-0690
690 V	
07600190 to 07600540	4200-0672
08600630 to 08600860	4200-1662
09601040 to 09601310 (9A)	4200-1660
10601500 to 10601780	4200-2210
11602100 to 11602630	4200-0690

Safety Product System Mechanical Gettina Technical Component UL Electrical Introduction Optimization Parameters Diagnostics information Information design Installation Installation started sizing Information data

6.5 External EMC filter

When a EMC filter is used, the switching frequency filter detailed must also be used. Failure to observe this may result in the EMC filter becoming ineffective and being damaged.

If an external EMC filter is used with an ELCB / RCD, a delay of at least 50 ms should be incorporated to ensure spurious trips are not seen. The leakage current is likely to exceed the trip level if all of the phases are not energized simultaneously. Refer to section 6.3.5 Use of residual current device (RCD) on page 126.

It is not possible to use the combi filter solution in a braking resistor replacement system.

When using the Regen drive as a braking resistor replacement, the Regen input must have an isolating transformer installed so that the Regen drive input can float with respect to ground.

The combi filter combines the switching frequency filter and EMC filter into one item. A significant part of an EMC filter are the capacitors between line and ground.

The result of placing a combi filter in circuit between the Regen drive and isolating transformer is that the ground connection to the combi filter prevents the Regen drive input from floating and damage to the system will therefore occur.

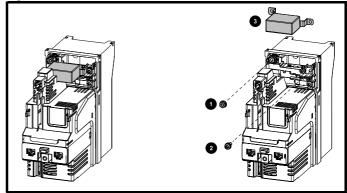
High ground leakage current

When an EMC filter is used, a permanent fixed ground connection must be provided which does not pass through a connector or flexible power cord.

Compliance with local EMC regulations

The installer of the drive is responsible for ensuring compliance with the EMC regulations that apply in the country in which the drive is to be used.

Removal of internal EMC filter 6.5.1


The internal EMC filter must be removed from the drive.

The supply must be disconnected before removing the internal EMC filter.

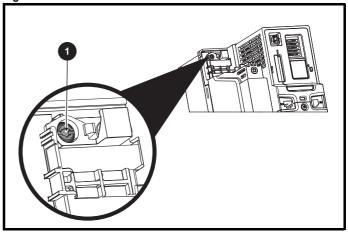
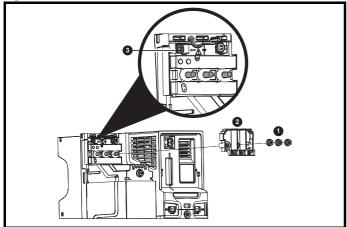

WARNING

Figure 6-17 Removal of the size 3 internal EMC filter

Remove the screw and nut (1) and (2) as shown above. Lift away from the securing points and rotate away from the drive. Ensure the screw and nut are replaced and re-tightened with a maximum torque of 2 N m (17.7 lb in).


Figure 6-18 .Removal of the size 4 internal EMC filter

To electrically disconnect the Internal EMC filter, remove the screw as highlighted above (1).

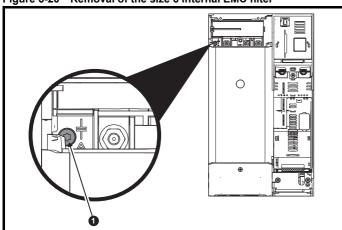

Safety		Product	System	Mechanical	Electrical	Getting			Technical	Component		UL
	Introduction		-,				Optimization	Parameters			Diagnostics	
information		Information	design	Installation	Installation	started	-		data	sizing		Information
information		Information	design	Installation	Installation	started	- p		data	sizing		Into

Figure 6-19 Removal of the size 5 internal EMC filter

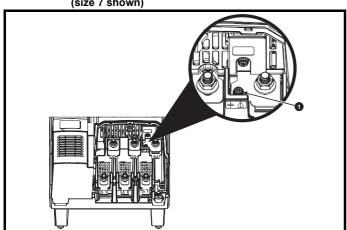

Remove the three M4 terminal nuts (1). Lift away the cover (2) to expose the M4 Torx internal EMC filter removal screw. Finally remove the M4 Torx internal EMC filter removal screw (3) to electrically disconnect the internal EMC filter.

Figure 6-20 Removal of the size 6 internal EMC filter

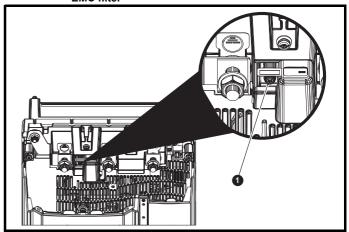

To electrically disconnect the Internal EMC filter, remove the screw as highlighted above (1).

Figure 6-21 Removal of the size 7, 8 and 9A internal EMC filter (size 7 shown)

To electrically disconnect the internal EMC filter, remove the screw as highlighted above (1).

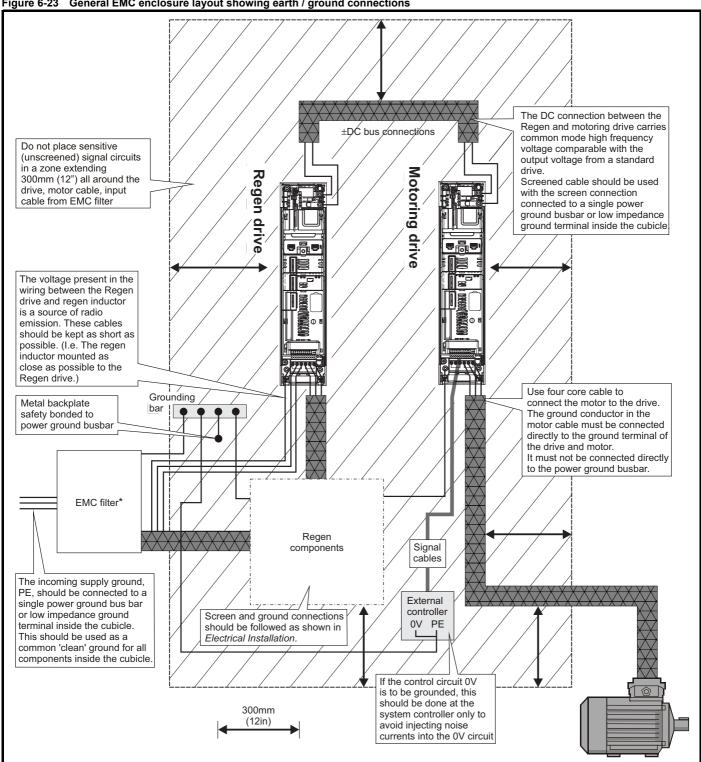
Figure 6-22 Removal of the size 9D, 10D and 11D inverter internal EMC filter

To electrically disconnect the Internal EMC filter, remove the screw as highlighted above (1).

NOTE

The internal filter is not removable on size 9E/T, 10E/T and 11E/T. These power formats are therefore not suitable for Regen systems. Select 9A/D, 10D or 11D power formats only.

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
--------------------	--------------	------------------------	---------------	----------------------------	----------------------------	-----------------	--------------	------------	----------------	------------------	-------------	-------------------


6.5.2 **General requirements for EMC**

Ground (earth) connections

The grounding arrangements should be in accordance with Figure 6-23, which shows both drives mounted on a back-plate with or without an additional enclosure. These precautions are necessary to ensure reliable operation and minimal interference with other equipment.

Figure 6-23 shows how to manage EMC when using a shielded motor cable, and indicates the clearances which should be observed around the drive and related 'noisy' power cables by all sensitive control signals / equipment in order to prevent coupling between the power wiring of the drives and the mains input cables.

Figure 6-23 General EMC enclosure layout showing earth / ground connections

Where required.

Safety Product System Mechanical Technical UL Electrical Component Introduction Optimization Parameters Diagnostics information Information Installation Installation Information design data sizing

6.5.3 Compliance with EN 61800-3:2004+A1:2012 (standard for Power Drive Systems)

Meeting the requirements of this standard depends on the environment that the drive is intended to operate in as follows:

Operation in the first environment

Observe the guidelines given in section 6.5.4 *Compliance with generic emission standards* on page 131. An external EMC filter will always be required.

This is a product of the restricted distribution class according to IEC61800-3

In a residential environment this product may cause radio interference in which case the user may be required to take adequate measures.

Operation in the second environment

In all cases a shielded motor cable must be used, and an EMC filter is required for all drives with a rated input current of less than 100 A.

For longer cables, an external filter is required. Where a filter is required, follow the guidelines in section 6.5.4 *Compliance with generic emission standards* on page 131.

Where a filter is not required, follow the guidelines given in section 6.5.2 *General requirements for EMC* on page 130.

The second environment typically includes an industrial low-voltage power supply network which does not supply buildings used for residential purposes. Operating the drive in this environment without an external EMC filter may cause interference to nearby electronic equipment whose sensitivity has not been appreciated. The user must take remedial measures if this situation arises. If the consequences of unexpected disturbances are severe, it is recommended that the guidelines in section 6.5.4 *Compliance with generic emission standards* be adhered to.

Refer to the Regen configuration EMC data sheet for further information on compliance with EMC standards and definitions of environments.

Unidrive M EMC Data Sheets are available from the supplier of the drive.

6.5.4 Compliance with generic emission standards

Use the recommended filter and shielded motor cable. Observe the layout rules given in the relevant *Unidrive M Power Installation Guide*.

6.5.5 Immunity

The immunity of the individual drive modules is not affected by operation in the regenerative mode, refer to Table 10-42 *Immunity compliance* on page 303. See drive EMC data sheets for further information.

This guide recommends the use of varistors between the incoming AC supply lines. These are strongly recommended to protect the drive from surges caused by lightning activity and/or mains supply switching operations.

Since the regenerative input stage must remain synchronized to the supply, there is a limit to the permitted rate of change of supply frequency. If rates of change exceeding 100 Hz/s are expected then the supplier of the drive should be consulted. This would only arise under exceptional circumstances e.g. where the power system is supplied from an individual generator.

The behaviour of the drive during dips and supply disturbances can be modified by changing the following drive parameters:

- Regen Synchronization Mode (03.004). Auto-synchronize (03.004 = 3) allows the drive to continue operating during symmetrical (balanced) and asymmetrical (unbalanced) supply faults of up to 2 seconds duration.
- Island Detection Enable (03.030)
- Regen Supply Loss AC Level (03.023)
- Regen Minimum Frequency (03.024) / Regen Maximum Frequency (03.025). Supply frequency monitoring.
- Regen Minimum Voltage (03.026) / Regen Maximum Voltage (03.027). Supply voltage monitoring.

Refer to the individual parameter descriptions for more information.

6.5.6 Emission

Emission occurs over a wide range of frequencies. The effects are divided into three main categories:

- Low frequency effects, such as supply harmonics and notching
- High frequency emission below 30 MHz where emission is predominantly by conduction
- High frequency emission above 30 MHz where emission is predominantly by radiation

When running at constant load the drive does not generate voltage fluctuations or flicker except if island detection / protection is enabled, since it injects reactive current into the supply. The injection current does not change with the Regen unit load. Care must be taken to ensure that the application does not cause the load to vary rapidly, resulting in flicker.

6.5.7 Other supplies

Wherever other equipment shares the same low voltage supply, i.e. 400 Vac, careful consideration must be given to the likely need for both switching frequency and EMC filters, as explained in section 6.5.10 *Switching frequency emission* and section 6.5.11 *Conducted and radiated RF emission*.

6.5.8 Supply voltage notching

Because of the use of input inductors and an active rectifier the drive causes no notching - but see section 6.5.10 *Switching frequency emission* for advice on switching frequency emission.

6.5.9 Supply harmonics

When operated from a balanced sinusoidal three-phase supply, the regenerative Unidrive M generates minimal harmonic current. Imbalance between phase voltages will cause the drive to generate some harmonic current. Existing voltage harmonics on the power system will cause some harmonic current to flow from the supply into the drive.

Note that this latter effect is not an emission, but it may be difficult to distinguish between incoming and outgoing harmonic current in a site measurement unless accurate phase angle data is available for the harmonics. No general rule can be given for these effects, but the generated harmonic current levels will always be small compared with those caused by a conventional drive with rectifier input.

6.5.10 Switching frequency emission

The Regen drive uses a PWM technique to generate a sinusoidal input voltage phase-locked to the mains supply. The input current therefore contains no harmonics of the supply unless the supply itself contains harmonics or is unbalanced. It does however contain current at the switching frequency and its harmonics, modulated by the supply frequency. For example, with a 3 kHz switching frequency and 50 Hz supply frequency there is current at 2.90, 3.10, 5.95, 6.05 kHz etc. The switching frequency is not related to that of the supply, so the emission will not be a true harmonic - it is sometimes referred to as an "interharmonic". The possible effect of this current is similar to that of a high-order harmonic, and it spreads through the power system in a manner depending on the associated impedances. The internal impedance of the Regen drive is dominated by the series inductors at the input. The voltage produced at switching frequency at the supply point is therefore determined by the potential divider action of the series inductors and the supply impedance.

Failure to fit a switching frequency filter may result in damage to other equipment, e.g. fluorescent light fittings, power factor correction capacitors and EMC filters.

Safety Product System Mechanical Getting Technical UL Electrical Component Introduction Optimization Parameters Diagnostics information Information design Installation Installation started sizing Information data

6.5.11 Conducted and radiated RF emission

Radio frequency emission in the frequency range from 150 kHz to 30 MHz is mainly conducted out of the equipment through electrical wiring. It is essential for compliance with all emission standards that the recommended EMC filter and a shielded (screened) motor cable are used. Most types of cable can be used provided it has an overall shield. For example, the shield formed by the armoring of steel wired armored cable is acceptable. The capacitance of the cable forms a load on the drive and should be kept to a minimum. The same considerations apply to any cables connecting the DC bus between drives, except that short direct wiring within the same enclosure need not be shielded.

In addition to motor cable length, conducted emission also varies with drive switching frequency. Selecting the lowest switching frequency will produce the lowest level of emission but will increase ripple in the Regen filter and switching frequency filter. In order to meet the emission standards the drive, filter and motor cable must be installed correctly. Refer to the guidelines given in section 6.5.2 *General requirements for EMC* on page 130.

When an EMC filter is used, the switching frequency filter must also be used. Failure to observe this may result in the EMC filter becoming ineffective and being damaged.

Single regenerative drive

When used in a simple integrated regenerative drive arrangement, i.e. a pair of drive modules back-to-back with all of the associated auxiliary components such as Regen chokes and filters located on the same panel, the radio frequency emission behaviour of a regenerative system is similar to that of a single conventional drive. The recommended arrangements given in the individual drive EMC data sheets should be followed. If used, the input RFI filter must be connected upstream of the switching-frequency filter as shown in the power connection diagrams (Figure 4-4 to Figure 4-8 on page 52). The switching-frequency filter is essential in this case to protect the RFI filter from switching-frequency current which would otherwise over-stress its capacitors.

NOTE

Theoretically the use of two drives physically close together can cause an increase in emission level of 3 dB compared with a single drive, although this is usually not observed in practice. All drives have sufficient margin in respect of the generic standard for the industrial environment EN 61000-6-4:2007+A1:2011 to allow for this increase.

Multi-drive and other more complex systems

Refer to the Unidrive M Regen configuration EMC data sheet.

For currents exceeding 300 A up to 2500 A suitable filters are available from the following manufacturers:

Epcos B84143-B250-5xx (range up to 2500 A) Schaffner FN3359-300-99 (range up to 2400 A)

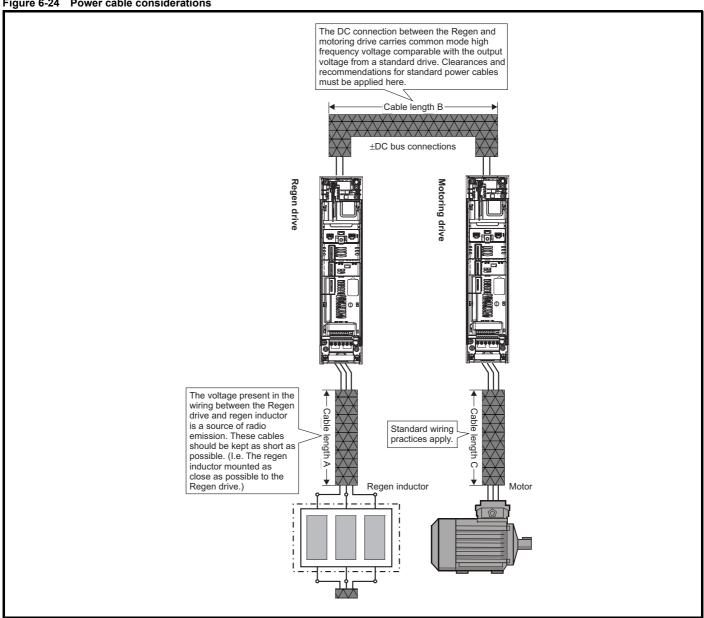
These filters may not give strict conformity with EN 61000-6-4:2007+A1:2011, but in conjunction with the relevant EMC installation guidelines they will reduce emission to sufficiently low levels to minimise the risk of disturbance.

Operation without a filter is a practical cost-effective possibility in an industrial installation where existing levels of electrical noise are likely to be high, and any electronic equipment in operation has been designed for such an environment. There is some risk of disturbance to other equipment, and in this case the user and supplier of the drive system must jointly take responsibility for correcting any problem which occurs.

Recommended EMC filters

These are the same filters as recommended for standard (non-regenerative) operation:

Table 6-18 Recommended filters


Drive	Motor cable length m	Part number
03200066 to 03200106		4200-3230
04200137 to 04200185		4200-0272
05200250		4200-0312
06200330 to 06200440		4200-2300
07200610 to 07200830		4200-1132
08201160 to 08201320		4200-1972
09201760 to 09202190 (9A)		4200-3021
10202830 to 10203000		4200-4460
03400078 to 03400100		4200-3480
04400150 to 04400172		4200-0252
05400270 to 05400300		4200-0402
06400350 to 06400470		4200-4800
07400660 to 07401000		4200-1132
08401340 to 08401570	100	4200-1972
09402000 to 09402240 (9A)	100	4200-3021
10402700 to 10403200		4200-4460
11403770 to 11404640		4200-0400
06500150 to 06500350		4200-3690
07500440 to 07500550		4200-0672
08500630 to 08500860		4200-1662
09501040 to 09501310 (9A)		4200-1660
10501520 to 10501900		4200-2210
11502000 to 11502850		4200-0690
07600190 to 07600540		4200-0672
08600630 to 08600860		4200-1662
09601040 to 09601310 (9A)		4200-1660
10601500 to 10601780		4200-2210
11602100 to 11602630		4200-0690

Safety Information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
--------------------	--------------	------------------------	---------------	----------------------------	----------------------------	--------------------	--------------	------------	----------------	------------------	-------------	-------------------

6.5.12 Wiring guidelines

The wiring guidelines provided for the individual drives also apply to regenerative operation, except that the switching frequency filter must be interposed between the input drive and the EMC filter. The same principles apply, the most important aspect being that the input connections to the EMC filter should be carefully segregated from the power wiring of the drives which carries a relatively high "noise" voltage.

Figure 6-24 Power cable considerations

6.5.13 Main contactors K2 with Rectifier

When using a rectifier for the charging of a Regen system the main contactor, K2 should be positioned as close as possible to the Regen drives power terminals.

6.6 Control connections

6.6.1 Unidrive M frame 10 and frame 11 external rectifier

When a Unidrive M frame 10 or frame 11 external rectifier is used to pre-charge a Regen system, the 24 V supply cable and RJ45 cable between the rectifier and the inverter must not be connected. This prevents the inverter generating a power comms or PSU trip when the supply to the rectifier is removed during the system start up sequence.

Safety Introduction Information Product System Mechanical Installation In	Safety information	Introduction I	-,			Getting started	Optimization	Parameters		Component sizing	Diagnostics	UL Information
--	--------------------	----------------	----	--	--	--------------------	--------------	------------	--	------------------	-------------	-------------------

6.6.2 Unidrive M600/M700/M701 control terminals

Table 6-19 The Unidrive M600/M700/M701 control connections consist of:

Function	Qty	Control parameters available	Terminal number
Differential analog input	1	Mode, offset, invert, scaling	5, 6
Single ended analog input	2	Mode, offset, invert, scaling, destination	7, 8
Analog output	2	Source, scaling	9, 10
Digital input	3	Terminal 27 setup as reset input	27, 28, 29
Digital input / output	3	Not user available, used for Regen configuration	24, 25, 26
Relay	1	Relay configured for contactor coil power supply	41, 42
Drive enable (Safe Torque Off)	1		31
+10 V User output	1		4
+24 V User output	1	Source, invert	22
0V common	6		1, 3, 11, 21, 23, 30
+24 V External input	1	Destination, invert	2

Key:

Destination parameter:	Indicates the parameter which is being controlled by the terminal / function
Source parameter:	Indicates the parameter being output by the terminal
Mode parameter:	Analog - indicates the mode of operation of the terminal, i.e. voltage 0-10 V, current 4-20 mA etc. Digital - indicates the mode of operation of the terminal, i.e. positive / negative logic (the Drive Enable terminal is fixed in positive logic), open collector.

All analog terminal functions can be programmed in menu 7.

Available digital terminal functions can be programmed in menu 8.

NOTE

The digital I/O at default has been configured to accept external signals from main and auxiliary contactors to allow the Regen mode to function correctly. Before changing any routing, refer to Menu 8 descriptions.

The control circuits are isolated from the power circuits in the drive by basic insulation (single insulation) only. The installer must ensure that the external control circuits are insulated from human contact by at least one layer of insulation (supplementary insulation) rated for use at the AC supply voltage.

If the control circuits are to be connected to other circuits classified as Safety Extra Low Voltage (SELV) (e.g. to a personal computer), an additional isolating barrier must be included in order to maintain the SELV classification.

If any of the digital inputs or outputs (including the drive enable input) are connected in parallel with an inductive load (i.e. contactor or motor brake) then suitable suppression (i.e. diode or varistor) should be used on the coil of the load. If no suppression is used then over voltage spikes can cause damage to the digital inputs and outputs on the drive.

Ensure the logic sense is correct for the control circuit to be used. Incorrect logic sense could cause the motor to be started unexpectedly.

Positive logic is the default state for the drive.

NOTE

Any signal cables which are carried inside the motor cable (i.e. motor thermistor, motor brake) will pick up large pulse currents via the cable capacitance. The shield of these signal cables must be connected to ground close to the point of exit of the motor cable, to avoid this noise current spreading through the control system.

NOTE

The Safe Torque Off drive enable terminal is a positive logic input only. It is not affected by the setting of *Input Logic Polarity* (08.029).


NOTE

The common 0 V from analog signals should, wherever possible, not be connected to the same 0 V terminal as the common 0 V from digital signals. Terminals 3 and 11 should be used for connecting the 0 V common of analog signals and terminals 21, 23 and 30 for digital signals. This is to prevent small voltage drops in the terminal connections causing inaccuracies in the analog signals.

NOTE

When using Unidrive M600 / M700 / M701 (not available on M702), a two wire Regen inductor / motor thermistor can be connected to analog input 3 by connecting the thermistor between terminal 8 and any 0 V common terminal.

Figure 6-25 **Default terminal functions**

^{*} Analog input 3 can be configured as a Regen inductor / motor thermistor input.

^{**} The Safe Torque Off (drive enable) terminal is a positive logic input only.

^{***} Pr 07.015 must be changed to Therm Short Cct or Thermistor mode to enable protection against Regen inductor over-heating.

^{****} Analog output 1 can be configured as a power feed-forward output (Pr 07.019 = 05.003).

Safety	Introduction	Product	System	Mechanical	Electrical	Getting	Optimization	Parameters	Technical	Component	Diagnostics	UL Information
information		Information	design	Installation	Installation	started	opzation		data	sizing	Diag.ioo.ioo	Information

6.6.3 Control terminal specification

1	0 V common	
Function	on	Common connection for all external devices

2	+24 V external input						
Functi	on	To supply the control circuit without providing a supply to the power stage					
Progran	nmability	Can be switched on or off to act as a digital input by setting the source Pr 08.063 and input invert Pr 08.053					
Nomina	l voltage	+24.0 Vdc					
Minimur voltage	m continuous operating	+19.2 Vdc					
Maximu voltage	m continuous operating	+28.0 Vdc					
Minimum start-up voltage		21.6 Vdc					
Recomr	mended power supply	40 W 24 Vdc nominal					
Recommended fuse		3 A, 50 Vdc					

3	0 V common	
Function	on	Common connection for all external devices

4	+10 V user output	
Functi	on	Supply for external analog devices
Voltage		10.2 V nominal
Voltage	tolerance	±1 %
Nominal	output current	10 mA
Protection	on	Current limit and trip @ 30 mA

	Precision reference Analog input 1					
5	Non-inverting input					
6	Inverting input					
Default	t function	User definable				
Type of i	input	Bipolar differential analog voltage or current, thermistor input				
Mode co	ontrolled by:	Pr 07.007				
Operatin	ng in Voltage mode					
Full scal	e voltage range	±10 V ±2 %				
Maximui	m offset	±10 mV				
Absolute voltage	e maximum range	±36 V relative to 0 V				
Working range	common mode voltage	±13 V relative to 0 V				
Input res	sistance	≥ 100 kΩ				
Monotonic		Yes (including 0 V)				
Dead band		None (including 0 V)				
Jumps		None (including 0 V)				
Maximum offset		20 mV				
Maximum non linearity		0.3% of input				
Maximum gain asymmetry		0.5 %				
Input filte	er bandwidth single pole	~3 kHz				
Operatin	ng in current mode					
Current ranges		0 to 20 mA ±5 %, 20 to 0 mA ±5 %, 4 to 20 mA ±5 %, 20 to 4 mA ±5 %				
Maximu	m offset	250 μΑ				
Absolute (reverse	e maximum voltage biased)	±36 V relative to 0 V				
Equivale	ent input resistance	≤ 300 Ω				
Absolute	e maximum current	±30 mA				
Operatir	ng in thermistor input mode ((in conjunction with analog input 3)				
Internal pull-up voltage		2.5 V				
Trip threshold resistance		User defined in Pr 07.048				
Short-circuit detection resistance		50 Ω ±40 %				
Commoi	n to all modes					
Resolution		12 bits (11 bits plus sign)				
Sample	/ update period	250 µs with destinations Pr 01.036, Pr 01.037, Pr 03.022 or Pr 04.008 in RFC-A and RFC-S modes. 4 ms for open loop mode and all other destinations in RFC-A or RFC-S modes.				

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
--------------------	--------------	---------------------	---------------	----------------------------	----------------------------	--------------------	--------------	------------	----------------	------------------	-------------	-------------------

7 Analog input 2	
Default function	Power input 1
Type of input	Bipolar single-ended analog voltage or unipolar current
Mode controlled by	Pr 07.011
Operating in voltage mode	
Full scale voltage range	±10 V ±2 %
Maximum offset	±10 mV
Absolute maximum voltage range	±36 V relative to 0 V
Input resistance	≥ 100 k Ω
Operating in current mode	
Current ranges	0 to 20 mA ±5 %, 20 to 0 mA ±5 %, 4 to 20 mA ±5 %, 20 to 4 mA ±5 %
Maximum offset	250 μΑ
Absolute maximum voltage (reverse bias)	±36 V relative to 0 V
Absolute maximum current	±30 mA
Equivalent input resistance	≤ 300 Ω
Common to all modes	
Resolution	12 bits (11 bits plus sign)
Sample / update	250 µs with destinations Pr 01.036, Pr 01.037 or Pr 03.022, Pr 04.008 in RFC-A or RFC-S. 4ms for open loop mode and all other destinations in RFC-A or RFC-S mode.

8 Analog input 3			
Default function	Voltage input		
Type of input	Bipolar single-ended analog voltage, or thermistor input		
Mode controlled by	Pr 07.015		
Operating in Voltage mode (d	default)		
Voltage range	±10 V ±2 %		
Maximum offset	±10 mV		
Absolute maximum voltage range	±36 V relative to 0 V		
Input resistance	≥100 k Ω		
Operating in thermistor input mode			
Supported thermistor types	Din 44082, KTY 84, PT100, PT 1000, PT 2000, 2.0 mA		
Internal pull-up voltage	2.5 V		
Trip threshold resistance	User defined in Pr 07.048		
Reset resistance	User defined in Pr 07.048		
Short-circuit detection resistance	50 Ω ±40 %		
Common to all modes			
Resolution	12 bits (11 bits plus sign)		
Sample / update period	4 ms		

9	Analog output 1							
10	Analog output 2							
Termi	nal 9 default function	Current magnitude						
Termi	nal 10 default function	DC Bus voltage						
Type of	output	Bipolar single-ended analog voltage						
Opera	ting in Voltage mode (d	lefault)						
Voltage	range	±10 V ±5 %						
Maximu	ım offset	±120 mV						
Maximum output current		±20 mA						
Load re	sistance	≥ 1 k Ω						
Protecti	on	20 mA max. Short circuit protection						
Comm	on to all modes							
Resolution		10-bit						
Sample	/ update period	250 μs (output will only change at update the rate of the source parameter if slower)						

11	0V common	
Functi	on	Common connection for all external devices

21	0V common	
Function		Common connection for all external devices

+24 V user output (se	lectable)	
Terminal 22 default function	+24 V user output	
Programmability	Can be switched on or off to act as a fourth digital output (positive logic only) by setting the source Pr 08.028 and source invert Pr 08.018	
Nominal output current	100 mA combined with DIO3	
Maximum output current	100 mA 200 mA (total including all Digital I/O)	
Protection	Current limit and trip	
Sample / update period	2 ms when configured as an output (output will only change at the update rate of the source parameter if slower)	

23	0 V common	
Function		Common connection for all external devices

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
--------------------	--------------	------------------------	---------------	----------------------------	----------------------------	-----------------	--------------	------------	-------------------	------------------	-------------	-------------------

24	Digital I/O 1			
25	Digital I/O 2			
26	Digital I/O 3			
Termin	nal 24 default function	Enable motor drive output		
Termir	nal 25 default function	Contactor closed input		
Termir	nal 26 default function	Drive ok input		
Туре		Positive or negative logic digital inputs, positive logic voltage source outputs		
Input / o	utput mode controlled by	Pr 08.031, Pr 08.032 and Pr 08.033		
Operat	ting as an input			
Logic m	ode controlled by	Pr 08.029		
Absolute maximum applied voltage range		-3 V to +30 V		
Impedance		>2 mA @15 V (IEC 61131-2, type 1, 6.6 k Ω)		
Input thresholds		10 V ±0.8 V (IEC 61131-2, type 1)		
Operat	ting as an output			
Nominal maximum output current		100 mA (DIO1 & 2 combined) 100 mA (DIO3 & 24 V User Output Combined)		
Maximum output current		100 mA 200 mA (total including all Digital I/O)		
Comm	on to all modes			
Voltage	range	0 V to +24 V		
Sample / Update period		2 ms (output will only change at the update rate of the source parameter)		

27	Digital Input 4		
28	Digital Input 5		
Termi	nal 27 default function	Reset input	
Termi	nal 28 default function	Analog INPUT 1 / INPUT 2 select	
Type		Negative or positive logic digital inputs	
Logic n	node controlled by	Pr 08.029	
Voltage	e range	0 V to +24 V	
	te maximum applied e range	-3 V to +30 V	
Impeda	ance	>2 mA @15 V (IEC 61131-2, type 1, 6.6 k Ω	
Input th	nresholds	10 V ±0.8 V (IEC 61131-2, type 1)	
Sample	e / Update period	250 µs when configured as an input with destinations Pr 06.035 or Pr 06.036 . 600 µs when configured as an input with destination Pr 06.029 . 2 ms in all other cases.	

29 Digital Input 6		
Terminal 29 default function	User definable input	
Туре	Negative or positive logic digital inputs	
Logic mode controlled by	Pr 08.029	
Voltage range	0 V to +24 V	
Absolute maximum applied voltage range	-3 V to +30 V	
Impedance	>2 mA @15 V (IEC 61131-2, type 1, 6.6 k Ω	
Input thresholds	10 V ±0.8 V (IEC 61131-2, type 1)	
Sample / Update period	250 µs when configured as an input with destinations Pr 06.035 or Pr 06.036 . 2 ms in all other cases.	

30	0V common	
Function		Common connection for all external devices

31	Drive Enable		
Type		Positive logic only digital input	
Voltage	range	0 V to +24 V	
Absolute	e maximum applied voltage	30 V	
Logic Th	nreshold	10 V ±5 V	
	te maximum voltage for to SIL3 and PL e	5 V	
Impedar	nce	>4 mA @15 V (IEC 61131-2, type 1, 3.3 k Ω)	
Low state maximum current for disable to SIL3 and PL e		0.5 mA	
Response time		Nominal: 8 ms Maximum: 20 ms	

41 Relay contacts		
Default function	Drive OK indicator	
Contact voltage rating	240 Vac, Installation over-voltage category II	
Contact maximum current rating	2 A AC 240 V 4 A DC 30 V resistive load 0.5 A DC 30 V inductive load (L/R = 40 ms)	
Contact minimum recommended rating	12 V 100 mA	
Contact type	Normally open	
Default contact condition	Closed when power applied and drive OK	
Update period	4 ms	

To prevent the risk of a fire hazard in the event of a fault, a fuse or other over-current protection must be installed in the relay circuit.

51	0V common				
52	+24 Vdc				
Size 6					
Nomina	l operating voltage	24.0 Vdc			
Minimur	n continuous operating voltage	18.6 Vdc			
Maximu	m continuous operating voltage	28.0 Vdc			
Minimur	n startup voltage	18.4 Vdc			
Maximu	m power supply requirement	40 W			
Recomm	mended fuse	4 A @ 50 Vdc			
Size 7 t	Size 7 to 11				
Nomina	l operating voltage	24.0 Vdc			
Minimur	n continuous operating voltage	19.2 Vdc			
Maximum continuous operating voltage		30 Vdc (IEC), 26 Vdc (UL)			
Minimur	n startup voltage	21.6 Vdc			
Maximu	m power supply requirement	60 W			
Recomm	mended fuse	4 A @ 50 Vdc			

Safety Product System Mechanical Electrical Technical UL Getting started Component Introduction Optimization Parameters Diagnostics information Information Installation Installation Information design data sizing

7 Getting started

7.1 Regen parameter settings

7.1.1 Switching frequency Pr 05.018 (Pr 00.041)

Set the switching frequency on the Regen drive to the required value (3 kHz default value).

A higher switching frequency setting has the following advantages:

- Line current ripple at the switching frequency is reduced, giving improved waveform quality.
- Acoustic noise produced by the line inductors is reduced.
- · Dynamic DC bus voltage response is improved.

NOTE

In some cases, setting the switching frequency to a value greater than the default 3 kHz results in current derating. Refer to Chapter 10 *Technical data* on page 276.

7.1.2 DC bus voltage set point

The table below defines the DC Bus voltage set point levels, assuming a tolerance of ± 10 % on the given supply voltage. The minimum value is defined as the peak input voltage plus some headroom. Headroom is required by the drive to allow correct control of the current. It is advisable to set the voltage below the maximum value to give more allowance for transient voltage overshoots.

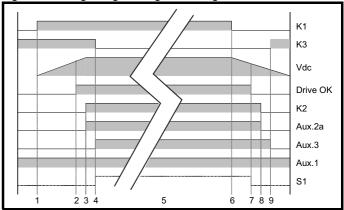
Table 7-1 DC bus voltage set point - Pr 03.005 (Pr 00.001)

Voltage levels	DC Bus voltage set-point		
Supply voltage Vac	Default Vdc	Minimum Vdc	
200	350	350	
400	700	700	
575	835	835	
690	1100	1100	

The DC bus voltage set point, see Pr 03.005 (Pr 00.001), should be set to a level that is suitable for the AC supply voltage being used. It is very important that the Regen drive DC bus voltage set point Pr 03.005 (Pr 00.001) is set above the peak AC supply voltage by at least 50 Vac.

7.2 Regen drive sequencing

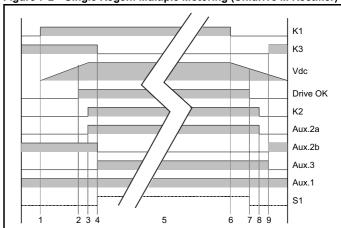
When a Regen drive is enabled, it goes through a line synchronization sequence. During this procedure, test pulses are applied to the incoming line to determine the voltage and phase. When it has been successfully synchronized to the line, the DC bus voltage controller is enabled and the DC bus voltage rises to the target voltage.


Only when all of these stages have been completed successfully is the motoring drive enabled. If at any time there is a fault, or the Regen drive is disabled, the motoring drive will also be disabled.

This sequence of events is important to prevent damage to the Regen drive, motoring drive or external power circuit components.

The sequence of events is as follows:

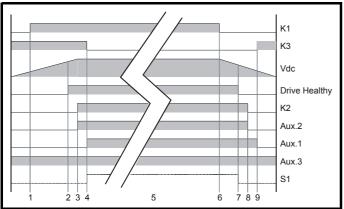
Power applied and power removed 400 V system (refer to Figure 4-4 on page 42)


Figure 7-1 Single Regen: Single Motoring

- K1 (main supply contactor / isolator / disconnect) is closed with charging circuit active (K3 closed).
- DC bus charges through the Regen drives Vac inputs L1, L2, L3 (charging circuit).
- If the DC Bus > the UV threshold then K2 Regen drive main contactor and Aux.2a are closed via Regen drives relay, control terminals 41, 42.
- K3 charging contactor is opened via K2 (Regen drive main contactor as Aux.2b opens) and Aux.3 closes. The Regen drive enable, S1 can now be applied.
- 5. The Regen drive and motoring drives can be enabled (enable signal from Regen drive to motoring drives active, control terminal 24).
- K1 (main supply contactor / isolator / disconnect) is opened removing power from the Regen system.
- DC bus discharges to the UV threshold at which point the drive OK relay becomes in-active. The Regen drives enable is removed. The motoring drives enable signal from Regen drive becomes inactive.
- Regen drive main contactor, K2 is opened via the drive OK relay, control terminals 41, 42. Aux.2a opens informing the drive that the Regen drives main contactor K2 is open.
- 9. K3 charging contactor is closed and Aux.3 opens.

Power applied and power removed 400 V system (refer to Figure 4-5 on page 44)

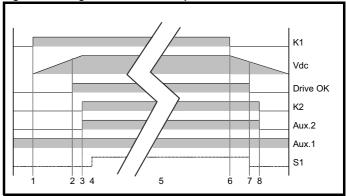
Figure 7-2 Single Regen: Multiple Motoring (Unidrive M Rectifier)


- K1 (main supply contactor / isolator / disconnect) is closed with charging circuit active (K3 closed).
- 2. DC bus charges through Unidrive M Rectifier (charging circuit).
- If the DC Bus > the UV threshold then K2 Regen drive main contactor and Aux.2a are closed via Regen drives relay, control terminals 41, 42.

Safety Product System Mechanical Electrical Getting started Technical Component UL Introduction Optimization Parameters Diagnostics information Information design Installation Installation Information data sizing

- K3 charging contactor is opened via K2 (Regen drive main contactor), as Aux.2b opens and Aux.3 closes. The Regen drive enable, S1 can now be applied.
- The Regen drive and motoring drives can be enabled (enable signal from Regen drive to motoring drives active, control terminal 24).
- K1 (main supply contactor / isolator / disconnect) is opened removing power from the Regen system.
- DC bus discharges to the UV threshold at which point the drive OK relay becomes in-active. The Regen drives enable is removed. The motoring drives enable signal from Regen drive becomes in-active.
- Regen drive main contactor, K2 is opened via the drive OK relay, control terminals 41, 42.
- Aux.2a opens informing the drive that the Regen drives main contactor K2 is open. K3 charging contactor is closed and Aux.3 opens.

Power applied and power removed 400 V system (refer to Figure 4-6 on page 46)


Figure 7-3 Single Regen: Multiple Motoring - external softstart resistor

- K1 (main supply contactor / isolator) is closed with charging circuit active (K3 closed)
- DC bus charges through the external charging resistors (charging circuit).
- If the DC Bus > 430 Vdc then K2 Regen drive main contactor and Aux.2 are closed via Regen drives relay, control terminals 41, 42.
- K3 charging contactor is opened via K2 (Regen drive main contactor) and Aux.1 closes. The Regen drive enable, S1 can now be applied.
- The Regen drive and motoring drives can be enabled (enable signal from Regen drive to motoring drives active, control terminal 24).
- K1 (main supply contactor / isolator) is opened removing power from the regen system.
- DC bus discharges to 410 Vdc at which point drive the healthy relay becomes in-active. The Regen drives enable is removed.
 The motoring drives enable signal from Regen drive becomes in-active
- Regen drive main contactor, K2 is opened via the drive healthy relay, control terminals 41, 42. Aux.2 opens informing the drive that the Regen drives main contactor K2 is open.
- 9. K3 charging contactor is closed and Aux.1 opens.

Power applied and power removed 400 V system (refer to Figure 4-8 on page 52)

Figure 7-4 Regen brake resistor replacement

- 1. K1 (main supply contactor / isolator / disconnect) is closed.
- 2. DC bus charges through motoring drives L1, L2, L3 Vac inputs.
- If the DC Bus > the UV threshold then K2 Regen drive main contactor and Aux.2 are closed via Regen drives relay, control terminals 41, 42.
- 4. Regen drive enable, S1 can now be applied.
- The Regen drive and motoring drives can be enabled (enable signal from Regen drive to motoring drives active, control terminal 24).
- K1 (main supply contactor / isolator / disconnect) is opened removing power from the Regen system.
- DC bus discharges to the UV threshold at which point the drive OK relay becomes in-active. The Regen drives enable is removed. The motoring drives enable signal from Regen drive becomes in-active.
- Regen drive main contactor, K2 is opened via the drive OK relay, control terminals 41, 42. Aux.2 opens informing the drive that the Regen drives main contactor K2 is open.

NOTE

When the Regen drive has powered-up and the DC bus voltage has exceeded the UV threshold, Pr 03.007 changes from 0 to 1 activating the drives relay which in turn closes the Regen drive main contactor (charging circuit disconnected using contactor / relay logic). If either the DC bus voltage falls below the UV threshold or the system is synchronized and the AC voltage falls below *Regen Supply AC Level* (Pr 03.023), Pr 03.007 will change from a 1 to 0 opening the Regen drive main contactor (charging circuit re-connected using contactor / relay logic).

Synchronization:

- Apply test pulses to line to determine magnitude and phase.
- Attempt to synchronize to the line.
- If synchronization is successful then enable the DC bus voltage controller

DC bus voltage controller active:

- DC bus voltage rises to reference level.
- Motoring drive enabled by digital output from Regen drive.

Motoring drive active:

- The motor may now be energized and rotated.
- Power flows to and from the line as necessary via the Regen drive.
- DC bus voltage remains stable.

Whilst running if:

- The line voltage dips too low:
 - The Regen drive synchronizes to the Vac supply and therefore knows the supply voltage (Pr **05.002**).
- OR the DC bus voltage goes out of regulation:
 - DC bus drops below the UV threshold.
- OR there is any trip on the Regen drive:
 - Drive OK no longer active. Regen and motoring drive(s) enable removed.

- 4													
	Safety		Product	Svstem	l Mechanical	Electrical	Gettina			Technical	Component	D	UL
	information	Introduction	Information	desian	Installation	Installation	started	Optimization	Parameters	data	sizing	Diagnostics	Information
	IIIIOIIIIalioii		IIIIOIIIIalioii	uesign	IIIStaliation	IIIStaliation	Starteu			uala	Siziriy		IIIIOIIIIalioii

- OR the supply contactor is de-energized:
 - Main supply contactor auxiliary contact connected to control terminal 25 of Regen drive opens.
- OR the Regen drive is disabled:
- OR the MCB trips:

External softstart resistor.

Then:

- the Regen drive will inhibit.
- · the motoring drive will be disabled by the Regen drive.
- the Regen drive main contactor will be opened.

7.2.1 Sequence

The motoring drive must only be enabled when the Regen drive is enabled, healthy, and synchronized to the AC supply. This will prevent any damage to the Regen drive start-up circuit and prevent OV trips.

7.3 Regen drive commissioning / start-up

- Ensure power and control connections are made as specified in this Design Guide.
- Ensure the Regen and motoring drives are not enabled.
- · Switch on the AC supply.
- Both the Regen and motoring drives should now power up through the relevant start-up circuits in standard open loop mode.
- On the Regen drive, configure the drive type Pr 11.031 (Pr 00.048) to Regen.
- The main contactors should now close; the relevant start-up circuit is disabled at this point.
- On the Regen drive, set up the switching frequency and DC bus set point voltage to the required values in either Menu 0 or Menu 3, refer to section 7.1.2 DC bus voltage set point. If the Regen inductor thermistor has been connected to analog input 3, Pr 07.015 must be changed to Therm Short Cct or Thermistor mode to enable protection against inductor overheating. Save the parameters.
- The Regen drive can now be enabled, the Regen drive should display Active.
- The commissioning / start-up of the motoring drive(s) can now be carried out.

7.4 Motoring drive commissioning

7.4.1 Motoring drive enable

When the Regen drive has been successfully synchronized, Pr 03.009 on the Regen drive will become active and digital I/O 1 on terminal 24 also becomes active allowing the motoring drive(s) to be enabled. If the Regen drive trips or attempts to re-synchronize to the supply, Pr 03.009 becomes zero and the enable signal for the motoring drive(s) is removed.

The setting of certain parameters in the motoring drive must be given special consideration when used in a Regen system.

7.4.2 Ramp Mode - Pr 02.004 (Pr 00.015)

When a motoring drive is used in a Regen system, the ramp mode should be set to *Fast*. The default setting of standard control will result in incorrect operation.

7.4.3 Open-loop Control Mode - Open loop only Pr 05.014 (Pr 00.007)

The default setting of *UR I* does not function correctly in the motoring drive when used in a Regen system. When the system is powered up, the motoring drive is disabled while the Regen drive synchronizes to the AC supply. The resultant delay before the motoring drive is enabled means that the stator resistance test cannot be completed. When open loop vector operation is required the voltage mode should be set to *UR S*.

7.4.4 AC Supply Loss Mode - Pr 06.003

The motoring drive will not operate correctly if the AC supply loss mode is set to *Ramp Stop*. If the AC supply is lost, the Regen drive disables the motoring drive and prevents a controlled stop from being completed.

Safety	latas di sati a a	Product	System	Mechanical	Electrical	Getting	Ontimization	Darameters	Technical	Component	Diagnostics	UL
information	Introduction	Information	design	Installation	Installation	started	Optimization	Parameters	data	sizing	Diagnostics	Information

8 Optimization

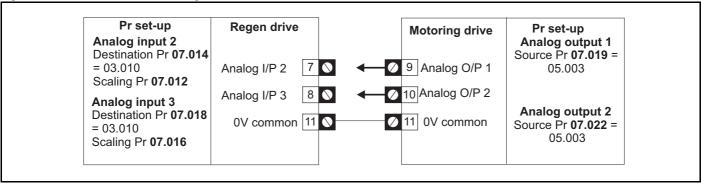
The following section covers optimization of the Regen system which can be carried out by the user.

Feature	Detail						
Power feed-forward	Power feed-forward can be used to reduce fast transient DC bus voltage effects produced by transient load conditions on motoring drives mainly in Dynamic applications where spurious over-voltage and/or over-current trips are experienced.						
Voltage controller gain	 The voltage controller gain can be implemented to overcome instability in the DC voltage on the common DC bus in the following conditions, A brake resistor replacement system where the ratio between Regen brake drive and motoring drive(s) DC bus capacitance is large With multiple motoring drive(s) where the ratio between the Regen drive(s) and motor drive(s) DC bus capacitance is large. Ensure the voltage controller gain is not increased too high as this can also introduce excessive ripple and instability on the DC bus. 						
Current loop gains	The current loop gains can be optimized to overcome spurious over-current trips during either synchronization to the power supply, or during operation. The default gain settings are sufficient for most applications however these can be modified with the proportional (Kp) being the most critical for stability.						
Power factor correction	 This does not optimize the Regen system but improves the power factor of the supply that is connected to the Regen system. Will introduce cost saving (electricity bill), compensate for inductive loads on the same supply, and overcome voltage drops due to "soft supplies". A separate power factor correction unit may not be required. The symmetrical current limit must be below its maximum in order for power factor correction to work (therefore may be limited due to Regen drive size). 						
Voltage ramp time	The ramp time for the DC bus voltage to reach the <i>Voltage Set Point</i> (03.005) can be controlled by <i>Voltage Ramp Time</i> (03.022) which allows a shorter synchronization time if required.						

8.1 Power feed-forward compensation (Pr 03.010)

Power feed-forward compensation can be used to reduce the transient DC bus voltages produced when a fast load transient occurs on the motoring drives connected to the Regen drive.

If $Power\ Output\ (07.033)$ from a motor drive is routed to an analog output with unity scaling it will produce full scale output when the power is equal to $3\times (VM_DC_VOLTAGE[MAX]\ /\ 2\sqrt{2})\times Full\ Scale\ Current\ Kc\ (11.061)$. If this signal is connected to an analog input on the Regen drive, the input is routed to $Power\ Input\ 1\ (03.010)$ and $Power\ Input\ 1\ Scaling\ (03.015)$ is set to the ratio of the current scaling values for the motor drive and Regen drives (i.e. Motor drive $Full\ Scale\ Current\ Kc\ (11.061)\ /\ Regen\ drive\ Full\ Scale\ Current\ Kc\ (11.061))$ then the correct power feed-forward term will be provided. The default value for $Power\ Input\ 1\ Scaling\ (03.015)$ is 1.000, and so unless the Regen and motor drives are the same size this parameter will need to be adjusted.

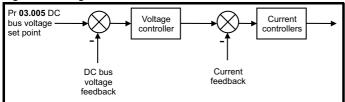

Up to 3 motor drives connected to the Regen drive DC terminals can use this system to provide power feed-forward as each of the power inputs are summed to give the final power feed-forward term. (It should be noted that a maximum of two analog inputs are provided on the drive with 250 μ s update rate. If the third input is used the update rate is 4 ms, and so this should only be used for a motor drive with limited dynamic performance.) If more motor drives are connected to the DC terminals of the Regen drive, or a digital power feed-forward system is required, then *Power Input kW* (03.018) should be used. The power in kW can be transferred from each motor drive using fast synchronous communications to an application module in the Regen drive. The total power in kW should be calculated by the applications module and then written to the *Power Input kW* (03.018). For the power feed-forward to be effective data should be transferred every 250 μ s with the minimum delay (i.e. 500 μ s) and the total power written to *Power Input kW* (03.018) every 250 μ s.

It should be noted that the polarity of all the power feed-forward parameters is that positive values cause power to flow from the supply and negative values cause power to flow into the supply.

Figure 8-1 shows the Regen drives analog inputs and motoring drives analog outputs which can be used to pass Pr **05.003** (motoring drive output power) to the Regen drive which is then used for the power feed-forward.

Only one analog output from the motoring drive and one analog input to the Regen drive is required to configure the power feed-forward term.

Figure 8-1 Power Feed-forward configurations



Safety Product System Mechanical Electrical Getting Technical UL Component Introduction Optimization Parameters Diagnostics information Information Installation Installation started Information design sizing data

8.2 Regen controllers

The Regen drive uses a DC bus voltage controller with inner current controllers as shown in Figure 8-2:

Figure 8-2 Regen controllers

The gains of the voltage and current controllers affect the stability of the Regen system, with incorrect settings resulting in over-voltage or over-current trips.

8.3 Current loop gains

The defaults current loop gains (Kp, Pr **04.013** and Ki, Pr **04.014**) are suitable for most standard Regen systems. However if the input inductance is significantly higher the proportional gain may need to be adjusted as described following.

The most critical parameter for stability is the current controller **proportional gain**, Pr **04.013**. The required value for this is dependent upon the Regen drives input inductance. If the inductance of the supply is a significant proportion of the recommended Regen inductor

i.e. 60/IDR mH per phase,

Where

IDR is the drive rated current

then the proportional gain may need to be increased.

The supply inductance is likely to be negligible compared to the Regen inductor value with small drives, but is likely to be significant with larger drives. The proportional gain, Pr **04.013** should be adjusted as described following using the total inductance per phase.

The *proportional gain*, Pr **04.013** can be set by the user so that

$$Pr 04.013 = Kp = (L / T) x (I_{fs} / V_{fs}) x (256 / 5)$$

Where:

T is the sample time of the current controllers. The drive compensates for any change of sample time, and so it should be assumed that the sample time is equivalent to the lowest sample rate of 167 μ s.

L is the total input inductance.

Ifs is the peak full-scale current feedback

I_{fs} = Full Scale Current Kc (11.061) x √2

Vfs is the maximum DC bus voltage.

Therefore:

Pr **04.013** = Kp = (L / 167 µs) x (Kc x $\sqrt{2}$ / Vfs) x (256 / 5)

= K x L x Kc

Where:

 $K = [\sqrt{2} / (Vfs \times 167 \mu s)] \times (256 / 5)$

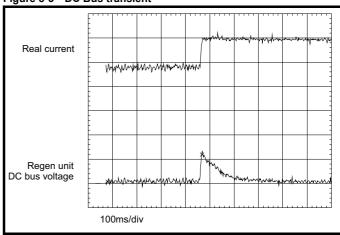
There is one value of the scaling factor K for each drive voltage rating as shown in the table below.

Drive voltage rating (11.033)	Vfs	K
200 V	415 V	1045
400 V	830 V	522
575 V	990 V	438
690 V	1190 V	364

This set-up will give a step response with minimum overshoot after a step change of current reference. The approximate performance of the current controllers will be as given below. The proportional gain can be increased by a factor of 1.5 giving a similar increase in bandwidth, however, this gives a step response with approximately 12.5 % overshoot.

Table 8-1 Current loop sample times

Switching frequency kHz	Current control sample time (T) µs			
3	167			
4	125			
6	83			
8	62.5			
12	83			
16	62.5			


As previously detailed the current controller *integral gain*, Pr **04.014** is not so critical with the recommended value being the default setting.

8.4 Voltage controller proportional gain Kp (Pr 03.006)

The DC bus voltage is controlled by a PI controller, which provides the reference for the real component of current from the inverter terminals to the supply. The power input parameters (*Power Input 1* (03.010), *Power Input 2* (03.013), *Power Input 3* (03.014) or *Power Input kW* (03.018)) are provided to give a power feed forward term, at the output of the PI controller, from the motor drives connected to the DC bus. If possible the power feed forwards should be used so that the PI controller is simply providing a trim to the DC bus voltage. In most cases the default voltage controller gains can be used, however the effect of the gains and the response of the voltage controller is discussed below.

For the purpose of analyzing the voltage controller response it is assumed that a power feed-forward term is not provided. If the power flow from the DC bus is increased (i.e. motor is accelerated by a motor drive connected to the DC bus) the DC bus voltage will fall, but the minimum level will be limited to just below the peak rectified level of the supply provided the maximum rating of the unit is not exceeded. If the power flow to the DC bus is increased (i.e. motor is decelerated by a motor drive connected to the DC bus) the DC bus voltage will rise. If the peak of the DC bus voltage reaches the over voltage level the Regen drive will trip. A rapid transient where power into the DC bus is increased is shown below in Figure 8-3.

Figure 8-3 DC Bus transient

The example shown is for a very rapid load change where the torque reference of the motor drive has been changed instantly from one value to another.

Safety Product Mechanical Electrical Getting Technical UL System Component Introduction **Optimization** Parameters Diagnostics information Information Installation Installation started Information design data sizing

The peak of the resulting transient is

 $\Delta Vdc = 191680 \times Pd / (vII \times Kp \times Kc) Volts$

and the time constant of the recovery is Kp / 30520 seconds.

Pd is the transient change of power flow

vII is the line to line supply voltage

Kp = Voltage Controller Proportional Gain Kp (03.006)

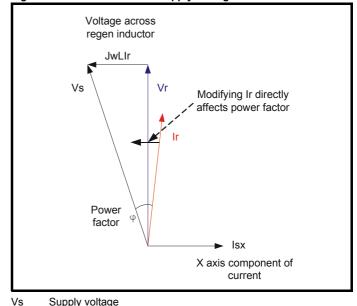
Kc = Full Scale Current Kc (11.061)

For example, if Pd = 7.5 kW, vII = 400 V, Kp = 4000, Kc = 38.222 A then $\Delta Vdc = 23.5 V$ and the time constant is 131 ms.

In the example given there is a very rapid change of power flow. The transient DC bus voltage change can be substantially reduced by introducing a time constant into the power transient. For example a filter could be included between the speed controller and current controller in the motor drive with Current Reference Filter 1 Time Constant (04.012). A time constant of 20 ms reduces the voltage transient by 25 % and a time constant of 40 ms reduces the voltage transient by 50 %. In most cases it is not desirable to reduce the performance of the motor drive, and so as already mentioned the best solution is to use a power feed forward term from the motor drive.

So far the discussion has been related to the DC bus voltage controller gain, however, the controller provides the real current reference to the Regen drive current controllers, and so the current controller gains affect the response of the voltage controller. If the default voltage controller gain is used and it is possible to obtain a stable response from the current controllers with their default gains then the voltage controller response will be stable. However, in some cases it will be necessary to reduce the current controller gains to make these controllers stable, in which case it is likely that the voltage controller gain will need to be reduced to make this controller stable.

It is possible to disable the DC bus voltage controller by setting Voltage Controller Proportional Gain Kp (03.006) to zero. This sets both the proportional and integral gains to zero. Once the controller is disabled the flow of power through the Regen drive can be defined using the power input parameters (Power Input 1 (03.010), Power Input 2 (03.013), Power Input 3 (03.014), Power Input kW (03.018)) or Active Current (04.002). This method of control can only be used if the DC bus voltage is defined at a voltage above the level of the rectified AC supply to the Regen drive by another system connected to the DC terminals


8.5 Power factor correction (Pr 04.008)

Reactive Current Reference (04.008) can be used to define a level of reactive current other than the default value of zero, so that the Regen drive can be made to produce or consume reactive power. Reactive Current Reference (04.008) defines the level of reactive current as a percentage of the Rated Current (05.007). Positive reactive current produces a component of current flowing from the supply to the Regen that lags the respective phase voltage, and negative reactive current produces a component of current that leads the respective

The variable maximum applied to Reactive Current Reference (04.008) is used to ensure that the total current does not exceed the maximum allowed. If the current limits are at their maximum values then no reactive current is allowed and

VM_REGEN_REACTIVE_REFERENCE[MIN] = 0 and VM REGEN REACTIVE REFERENCE[MAX] = 0. As the Final Current Limit (04.018) is reduced then more reactive current is allowed.

Figure 8-4 Power flow from supply to Regen drive

Supply voltage

Vr Voltage at Regen drive terminals

lr Total current at Regen drive terminals

JwLlr Voltage across Regen inductor

Power factor

NOTE

The drive can control the reactive current / power, but not the real power.

8.6 Current trimming

A current feedback trimming routine runs before the Regen drive is enabled to minimise offsets in the current feedback. If Current Trim Mode (03.011) = 0 the current offset trim is only carried out once when the drive comes out of the under voltage state and is not repeated unless the supply is removed and re-applied. The current offset trim is only carried out when the charge system is enabled (contactor open) as this minimizes current flowing into the inverter terminals due to noise on the supply that may disturb the current offset trimming.

Current Trim Mode (03.011) should be set to one if the current offset trim is required each time when the Regen drive is enabled. To ensure that the current offset trim is not disturbed by noise on the supply, the charge system is enabled before the current offset trim and then disabled again before the Regen drive goes into its active state. This causes the charge system contactors to switch each time the Regen drive is enabled.

8.7 Voltage ramp time control (Pr 03.022)

When a Regen drive is enabled and has synchronized to the supply, the DC bus voltage is at a level equal to the peak line to line voltage. The voltage controller is then enabled and attempts to raise the DC bus voltage to the set-point defined by Voltage Set Point (03.005). The voltage reference is ramped up to the requried level at a rate defined by Voltage Ramp Time (03.022) in V/ms. The default value of 1.0 V/ms ensures limited over-shoot when the DC bus voltage reaches the required level. If a shorter synchronization time is required then the ramp rate can be increased, however care must be taken to avoid overvoltage trips particularly if a high level is used for the DC bus voltage setpoint. If a faster ramp rate and high set-point are required it may be necessary the increase Voltage Controller Proportional Gain Kp (03.006) to minimise over-shoot.

Safety Product System Mechanical Electrical Getting Technical Component UL Introduction Optimization Parameters Diagnostics information Information Installation Installation started sizing Information design data

8.8 Frequency limits

Frequency limits have been applied to the Regen system output (defined in *Regen Minimum Frequency* (03.024) and *Regen Maximum Frequency* (03.025)). These are enabled as default. If the Regen system supply frequency is within approximately 5 Hz of either limit for 100 ms, the system will not remain synchronized and will attempt to re-synchronize. The frequency limits are important if the supply is removed when the Regen system is active, as the system could remain active, particularly if energy is fed into the dc bus, with an uncontrolled output frequency and voltage.

8.9 Voltage limits

Voltage limits are available (defined in Regen Minimum Voltage (03.026) and Regen Maximum Voltage (03.027)). These are not enabled as default. If the voltage limits are active, a Voltage Range trip is generated when the voltage is outside the range defined for 100 ms. The voltage limits are important if the supply is removed when the Regen system is active, as the system could remain active, particularly if energy is fed into the dc bus, with an uncontrolled output frequency and voltage.

8.10 Supply voltage detection

Synchronization issues can be seen when the dc bus voltage is not proportional to the supply voltage, for example, a PV application. There are modes in *Supply Voltage Detection Mode* (03.029) which provide a robust and fast synchronization for these non standard applications.

8.11 Island detection

The purpose of this feature is to prevent unwanted islanded operation, where part of the power distribution network becomes separated from the power grid and is unintentionally maintained by an inverter.

An island detection system designed to meet the requirements of IEEE1547 and VDE 0126-1-1 has been included. Both IEEE and VDE standards describe an unintentional islanding test that uses a parallel resonant RLC load to create a worst case condition for the formation of unintentional islands. When the detection system is enabled, a small reactive current is injected that allows the inverter to detect this resonant condition. A system has been included that allows the reactive current injected by a number of Regen drives to be synchronized to a suitable master clock (required in some large scale PV applications).

8.12 Synchronization headroom (Pr 03.035)

Synchronization Headroom (03.035) allows more control to prevent over-voltage trips occurring during synchronization due to non-standard filter components or high impedance power supply.

8.13 Harmonic reduction

Even with the optimum DC bus voltage and current controller set-up, it is possible for supply voltage distortion to cause harmonic distortion in the AC currents between the supply and the Regen drive. The Regen drive includes an additional system to reduce imbalance, 5th harmonics and 7th harmonics in the AC currents. This system is enabled with *Harmonic Reduction Enable* (03.021). Distortion reduction due to voltage imbalance is enabled as default.

8.14 Active current reference

It is possible for the user to define the active current reference via *Active Current Reference* (04.009). It should be noted that the Regen drive can no longer control its own DC bus voltage and so this must be controlled by an external system e.g. the voltage master module in a SPV system.

8.15 Current feedback filter disable (Pr 04.021)

The filtering applied to the active and reactive current parameters can be disabled using *Current Feedback Filter Disable* (04.021). This is provided for SPV applications where the drive current measurement is used by an external controller.

8.16 DC bus voltage high range (Pr 05.023)

DC bus Voltage High Range (05.023) provides voltage feedback that has lower resolution and a higher range than *DC* bus Voltage (05.005) and so it is possible to determine the DC bus voltage even if this exceeds the level of the over-voltage trip.

Safety	Introduction	Product	System	Mechanical	Electrical	Getting	Optimization	Doromotoro	Technical	Component	Diagnostics	UL
information	Introduction	Information	design	Installation	Installation	started	Optimization	Parameters	data	sizing	Diagnostics	Information

9 Parameters

This is a quick reference to all parameters in the drive showing units, ranges limits etc, with block diagrams to illustrate their function. Full descriptions of the parameters can be found in the *Parameter Reference Guide*.

These advanced parameters are listed for reference purposes only. The lists in this chapter do not include sufficient information for adjusting these parameters. Incorrect adjustment can affect the safety of the system, and damage the drive and or external equipment. Before attempting to adjust any of these parameters, refer to the *Parameter Reference Guide*.

Table 9-1 Menu descriptions

Menu	Description
0	Commonly used basic set up parameters for quick / easy programming
3	Regen control
4	Current control
5	Regen status
6	Sequencer and clock
7	Analog I/O, Temperature monitoring
8	Regen digital I/O
9	Programmable logic, motorized pot, binary sum, timers and scope
10	Status and trips
11	Drive set-up and identification, serial communications
12	Threshold detectors and variable selectors
14	User PID controller
15	Option module slot 1 set-up menu
16	Option module slot 2 set-up menu
17	Option module slot 3 set-up menu
18	General option module application menu 1
19	General option module application menu 2
20	General option module application menu 3
22	Menu 0 set-up
23	Not allocated
28	Reserved menu
29	Reserved menu
30	Onboard user programming application menu
Slot 1	Slot 1 option menus*
Slot 2	Slot 2 option menus*
Slot 3	Slot 3 option menus*

^{*} Only displayed when the option modules are installed.

Default abbreviations:

Standard default value (50 Hz AC supply frequency)

USA default value (60 Hz AC supply frequency)

In some cases, the function or range of a parameter is affected by the setting of another parameter. The information in the lists relates to the default condition of any parameters affected in this way.

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
--------------------	--------------	---------------------	---------------	----------------------------	----------------------------	--------------------	--------------	------------	----------------	------------------	-------------	-------------------

Table 9-2 Key to parameter table coding

Coding	Attribute
RW	Read/Write: can be written by the user
RO	Read only: can only be read by the user
Bit	1 bit parameter. 'On' or 'Off' on the display
Num	Number: can be uni-polar or bi-polar
Txt	Text: the parameter uses text strings instead of numbers.
Bin	Binary parameter
IP	IP Address parameter
Mac	Mac Address parameter
Date	Date parameter
Time	Time parameter
Chr	Character parameter
FI	Filtered: some parameters which can have rapidly changing values are filtered when displayed on the drive keypad for easy viewing.
DE	Destination: This parameter selects the destination of an input or logic function.
RA	Rating dependent: this parameter is likely to have different values and ranges with drives of different voltage and current ratings. Parameters with this attribute will be transferred to the destination drive by non-volatile storage media when the rating of the destination drive is different from the source drive and the file is a parameter file. However, the values will be transferred if only the current rating is different and the file is a difference from default type file.
ND	No default: The parameter is not modified when defaults are loaded
NC	Not copied: not transferred to or from non-volatile media during copying.
PT	Protected: cannot be used as a destination.
US	User save: parameter saved in drive EEPROM when the user initiates a parameter save.
PS	Power-down save: parameter automatically saved in drive EEPROM when the under volts (UV) state occurs.

9.1 Parameter ranges and variable maximums

Some parameters in the drive have a variable range with a variable minimum and a variable maximum value which is dependent on one of the following:

- · The settings of other parameters
- The drive rating
- The drive mode
- · Combination of any of the above

The tables below give the definition of variable minimum/maximum and the maximum range of these.

VM_A	C_VOLTAGE	Range applied to parameters showing AC voltage
Units	V	
Range of [MIN]	0	
Range of [MAX]	0 to 930	
Definition	VM_AC_VOLTAGE	MAX] is drive voltage rating dependent. See Table 9-3.
Definition	VM_AC_VOLTAGE	[MIN] = 0

VM_AC_VO	Range applied to the AC voltage set-up parameters
Units	V
Range of [MIN]	0
Range of [MAX]	0 to 690
Definition	VM_AC_VOLTAGE_SET[MAX] is drive voltage rating dependent. See Table 9-3.
Deminion	VM_AC_VOLTAGE_SET[MIN] = 0

VM_DC	/OLTAGE Range applied to parameters showing DC voltage
Units	V
Range of [MIN]	0
Range of [MAX]	0 to 1190
Definition	VM_DC_VOLTAGE[MAX] is the full scale DC bus voltage feedback (over voltage trip level) for the drive. This level is drive voltage rating dependent. See Table 9-3. VM_DC_VOLTAGE[MIN] = 0

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
--------------------	--------------	---------------------	---------------	----------------------------	----------------------------	--------------------	--------------	------------	-------------------	------------------	-------------	-------------------

VM_DC_VOI	Range applied to DC voltage reference parameters
Units	V
Range of [MIN]	0
Range of [MAX]	0 to 1150
Definition	VM_DC_VOLTAGE_SET[MAX] is drive voltage rating dependent. See Table 9-3. VM_DC_VOLTAGE_SET[MIN] = 0

VM_DRIVE	CURRENT	Range applied to parameters showing current in A		
Units	Α			
Range of [MIN]	99999.999 to 0.000			
Range of [MAX]	0.000 to 99999.999			
Definition	VM_DRIVE_CURRENT[MAX] is equivalent to the full scale (over current trip level) or Kc value for the drive and is by Full Scale Current Kc (11.061). VM_DRIVE_CURRENT[MIN] = - VM_DRIVE_CURRENT[MAX]			

VM_DRIVE_CURF	RENT_UNIPOLAR Unipolar version of VM_DRIVE_CURRENT
Units	A
Range of [MIN]	0.000
Range of [MAX]	0.000 to 99999.999
Definition	VM_DRIVE_CURRENT_UNIPOLAR[MAX] = VM_DRIVE_CURRENT[MAX] VM_DRIVE_CURRENT_UNIPOLAR[MIN] = 0.000

VM_HIGH	H_DC_VOLTAGE	Range applied to parameters showing high DC voltage
Units	V	
Range of [MIN]	0	
Range of [MAX]	0 to 1500	
Definition		LTAGE[MAX] is the full scale DC bus voltage feedback for the high DC bus voltage measurement the voltage if it goes above the normal full scale value. This level is drive voltage rating dependent. LTAGE[MIN] = 0

VM_LOW	_UNDER_VOLTS	Range applied the low under-voltage threshold
Units	V	
Range of [MIN]	24	
Range of [MAX]	24 to 1150	
Definition	If Back-up Mode En	_VOLTS[MAX] = VM_STD_UNDER_VOLTS[MIN] pable (06.068) = 1: _VOLTS[MAX] = VM_STD_UNDER_VOLTS[MIN] / 1.1.

VM_MIN_SWITCH	Range applied to the minimum switching frequency parameter
Units	User units
Range of [MIN]	0
Range of [MAX]	0 to 6
Definition	VM_MIN_SWITCHING_FREQUENCY[MAX] = Maximum Switching Frequency (05.018) VM_MIN_SWITCHING_FREQUENCY[MIN] = 1 for Regen mode (subject to the maximum)

Cofoty		Droduct	Cyctom	Mechanical	Flootrical	Cotting			Toobnical	Component		UL
Safety	Introduction	Product	System	Medianical	Electrical	Getting	Optimization	Parameters	Technical	Component	Diagnostics	
information		Information	design	Installation	Installation	started			data	sizing		Information

VM_MOTOR1_	CURRENT_LIMIT	Range applied to current limit parameters
Units	%	
Range of [MIN]	0.0	
Range of [MAX]	0.0 to 1000.0	
Definition	Where: I _{MaxRef} is 0.9 x Pr 11.0	$\Gamma_{LIMIT[MIN]} = 0.0$ $\Gamma_{LIMIT[MAX]} = (I_{MaxRef} / Pr \ 05.007) \times 100 \%$ $Position 1.032 \text{ and the motor rated current set in Pr } 05.007 \text{ is less than or equal to Pr } 11.032 \text{ are the lower of } 0.9 \times Pr \ 11.061 \text{ or } 1.1 \times Pr \ 11.060 \text{ (i.e. Normal duty)}.$

	VM_POWER	Range applied to parameters that either set or display power
Units	kW	
Range of [MIN]	-99999.999 to 0.0	00
Range of [MAX]	0.000 to 99999.99	9
		() is rating dependent and is chosen to allow for the maximum power that can be output by the drive output voltage, at maximum controlled current and unity power factor.
Definition	VM_POWER[MA)	$X_{ij} = \sqrt{3} \times VM_{ij} $
	VM_POWER[MIN] = -VM_POWER[MAX]

VM_RATED	CURRENT	Range applied to rated current parameters
Units	Α	
Range of [MIN]	0.000	
Range of [MAX]	0.000 to 99999.999	
Definition	VM_RATED_CURRENT [I Normal Duty rating of the	MAX] = Maximum Rated Current (11.060) and is dependent on the drive rating. This is the drive.
	VM_RATED_CURRENT [I	MIN] = 0.00

VM_REGEN	REACTIVE Range applied to the reactive current reference in Regen mode
Units	%
Range of [MIN]	-1000.0 to 0.0
Range of [MAX]	0.0 to 1000.0
	A maximum is applied to the reactive current reference parameter so that the combined current reference for the active and reactive currents does not exceed IMaxRef.
	VM_REGEN_REACTIVE = v(VM_MOTOR1_CURRENT_LIMIT2 – ILimit2)
	where:
Definition	ILimit is gives the highest level of the active current reference that can occur. This value is defined by the current limit values. If the current limits are all set to their maximum values (i.e. VM_MOTOR1_CURRENT_LIMIT) then there is no current capability left for the reactive current. However, if the current limits are reduced the resulting headroom can be used for the reactive current. ILimit is defined by a combination of all the current limits excluding any reduction of the current limit due to the motor thermal model, It should be noted that if <i>Island Detection Enable</i> (03.030) = 1 then VM_REGEN_REACTIVE is reduced by 5% to allow for the islanding system injection current.
	VM_REGEN_REACTIVE[MIN] = - VM_REGEN_REACTIVE[MAX]

VM_STD_U	JNDER_VOLTS	Range applied the standard under-voltage threshold
Units	V	
Range of [MIN]	0 to 1150	
Range of [MAX]	0 to 1150	
Definition		VOLTS[MAX] = VM_DC_VOLTAGE_SET / 1.1 VOLTS[MIN] is voltage rating dependent. See Table 9-3.

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
IIIIOIIIIalioii		IIIIOIIIIalioii	uesign	IIIStaliation	IIIStaliation	Starteu			uala	Siziriy	=	IIIIOIIIIalioii

VM_SWITCHING	FREQUENCY Range applied to the maximum switching frequency parameters
Units	User units
Range of [MIN]	0
Range of [MAX]	0 to 6
Definition	VM_SWITCHING_FREQUENCY[MAX] = Power stage dependent VM_SWITCHING_FREQUENCY[MIN] = 1 for Regen mode (subject to the maximum)

VM_TORQUE	CURRENT Range applied to the active current
Units	%
Range of [MIN]	-1000.0 to 0.0
Range of [MAX]	0.0 to 1000.0
Definition	VM_TORQUE_CURRENT[MAX] = VM_MOTOR1_CURRENT_LIMIT[MAX] VM_TORQUE_CURRENT[MIN] = -VM_TORQUE_CURRENT[MAX]

VM_TORQUE_	CURRENT_UNIPOLAR Unipolar version of VM_TORQUE_CURRENT
Units	%
Range of [MIN]	0.0
Range of [MAX]	0.0 to 1000.0
Definition	VM_TORQUE_CURRENT_UNIPOLAR[MAX] = VM_TORQUE_CURRENT[MAX] VM_TORQUE_CURRENT_UNIPOLAR[MIN] = 0.0 User Current Maximum Scaling (04.024) defines the variable maximum/minimums VM_USER_CURRENT and VM_USER_CURRENT_HIGH_RES which are applied to Percentage Load (04.020), Torque Reference (04.008) and Torque Offset (04.009). This is useful when routing these parameters to an analog output as it allows the full scale output value to be defined by the user. This maximum is subject to a limit of MOTOR1_CURRENT_LIMIT or MOTOR2_CURRENT_LIMIT depending on which motor map is currently active.
	The maximum value (VM_TORQUE_CURRENT_UNIPOLAR [MAX] varies between drive sizes with default parameters loaded. For some drive sizes the default value may be reduced below the value given by the parameter range limiting.

VM_USER_	Range applied to torque reference and percentage load parameters with one decimal place
Units	%
Range of [MIN]	-1000.0 to 0.0
Range of [MAX]	0.0 to 1000.0
Definition	VM_USER_CURRENT[MAX] = User Current Maximum Scaling (04.024) VM_USER_CURRENT[MIN] = -VM_USER_CURRENT[MAX] User Current Maximum Scaling (04.024) defines the variable maximum/minimums VM_USER_CURRENT and VM_USER_CURRENT_HIGH_RES which are applied to Percentage Load (04.020), Torque Reference (04.008) and Torque Offset (04.009). This is useful when routing these parameters to an analog output as it allows the full scale output value to be defined by the user. This maximum is subject to a limit of MOTOR1_CURRENT_LIMIT or MOTOR2_CURRENT_LIMIT depending on which motor map is currently active. The maximum value (VM_TORQUE_CURRENT_UNIPOLAR [MAX] varies between drive sizes with default parameters loaded. For some drive sizes the default value may be reduced below the value given by the parameter range limiting.

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
--------------------	--------------	---------------------	---------------	----------------------------	----------------------------	--------------------	--------------	------------	----------------	------------------	-------------	-------------------

VM_USER_CURR	Range applied to torque reference and percentage load parameters with two decimal places
Units	%
Range of [MIN]	-1000.00 to 0.00
Range of [MAX]	0.00 to 1000.00
Definition	VM_USER_CURRENT_HIGH_RES[MAX] = User Current Maximum Scaling (04.024) with an additional decimal place VM_USER_CURRENT_HIGH_RES[MIN] = -VM_USER_CURRENT_HIGH_RES[MAX] User Current Maximum Scaling (04.024) defines the variable maximum/minimums VM_USER_CURRENT and VM_USER_CURRENT_HIGH_RES which are applied to Percentage Load (04.020), Torque Reference (04.008) and Torque Offset (04.009). This is useful when routing these parameters to an analog output as it allows the full scale output value to be defined by the user. This maximum is subject to a limit of MOTOR1_CURRENT_LIMIT or MOTOR2_CURRENT_LIMIT depending on which motor map is currently active. The maximum value (VM_TORQUE_CURRENT_UNIPOLAR [MAX] varies between drive sizes with default parameters loaded. For some drive sizes the default value may be reduced below the value given by the parameter range limiting.

Table 9-3 Voltage ratings dependant values

Variable min/max		Voltage	level (V)	
variable illii/illax	200 V	400 V	575 V	690 V
VM_DC_VOLTAGE_SET[MAX]	400	800	955	1150
VM_DC_VOLTAGE[MAX]	415	830	990	1190
VM_AC_VOLTAGE_SET[MAX]	265	530	635	765
VM_AC_VOLTAGE[MAX]	325	650	780	930
VM_STD_UNDER_VOLTS[MIN]	175	330	435	435
VM_SUPPLY_LOSS_LEVEL[MIN]	205	410	540	540
VM_HIGH_DC_VOLTAGE	1500	1500	1500	1500

Safety	Introduction	Product	System	Mechanical	Electrical	Getting	Ontimization	Doromotoro	Technical	Component	Diagnostics	UL
information	Introduction	Information	design	Installation	Installation	started	Optimization	Parameters	data	sizing	Diagnostics	Information

9.2 Menu 0: Basic parameters

Table 9-4 Unidrive M Regen menu 0 parameter descriptions

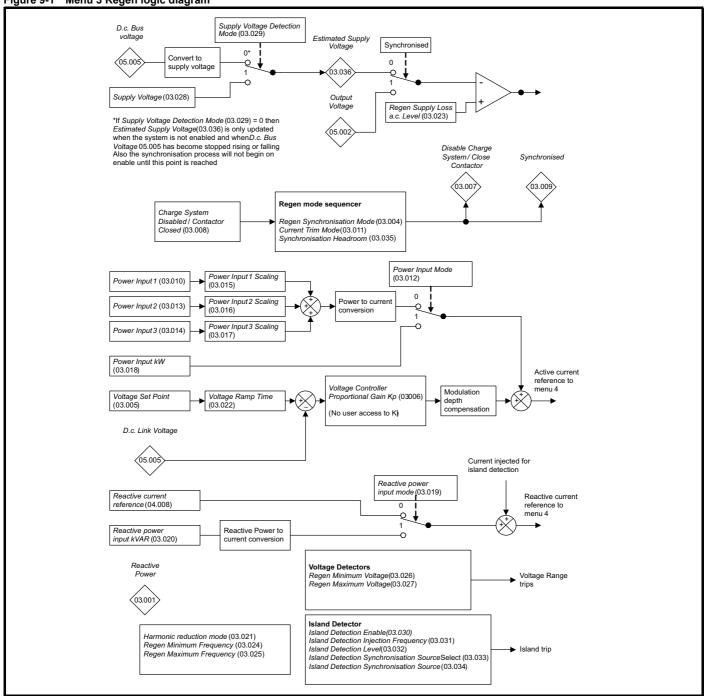
	Parameter		Range(≎)	Default(➪)	Туре						
00.001	Voltage Set Point	{03.005}	0 to VM_DC_VOLTAGE_SET V	200 V: 350 Vdc 400 V: 700 Vdc 575 V: 835 Vdc 690 V: 1100 Vdc	RW	Num		RA		US	
00.002	Voltage Controller Proportional Gain Kp	{03.006}	0 to 65535	4000	RW	Num				US	
00.003	Synchronized	{03.009}	Off (0) or On (1)		RO	Bit	ND	NC	PT		
00.004	Voltage Set Point	{03.005}	0 to VM_DC_VOLTAGE_SET V	200 V: 350 Vdc 400 V: 700 Vdc 575 V: 835 Vdc 690 V: 1100 Vdc	RW	Num		RA		US	
00.005	Output Voltage	{05.002}	0 to VM_AC_VOLTAGE V		RO	Num	ND	NC	PT		
00.006	Not used										
00.007	Regen Synchronization Mode	{03.004}	Re-synchronize (0), Delayed Trip (1), Trip (2), Auto-synchronize (3)	Re-synchronize (0)	RW	Txt				US	
00.008	Disable Charge System / Close Contactor	{03.007}	Off (0) or On (1)		RO	Bit		NC	PT		
00.009	Charge System Disabled / Contactor Closed	{03.008}	Off (0) or On (1)		RO	Bit	ND	NC			
00.010	Power Input 1	{03.010}	±100.0 %	0.0 %	RW	Num		NC			
00.011	Output Frequency	{05.001}	±200.0 Hz		RO	Num	ND		PT		
00.012	Current Magnitude	{04.001}	0 to VM_DRIVE_CURRENT_UNIPOLAR A		RO	Num	ND	_	PT		
00.013	Active Current	{04.002}	VM_DRIVE_CURRENT A		RO	Num	ND		PT		
00.014	Output Power	{05.003}	VM_POWER kW		RO	Num	ND		PT		
00.015	Reactive Power	{03.001}	VM_POWER kVAr		RO	Num	ND	NC	PT		
00.016	Not used										
00.017	Reactive Current Reference	{04.008}	VM_REGEN_REACTIVE %	0.0 %	RW	Num				US	
00.018	Not used										
00.019	T7 Analog Input 2 Mode	{07.011}	4-20mA Low (-4), 20-4mA Low (-3), 4-20mA Hold (-2), 20-4mA Hold (-1), 0-20mA (0), 20-0mA (1), 4-20mA Trip (2), 20-4mA Trip (3), 4-20mA (4), 20-4mA (5), Volt (6)	Volt (6)	RW	Txt				US	
00.020	T7 Analog Input 2 Destination	{07.014}	0.000 to 59.999	3.010	RW	Num	DE		PT	US	
00.021	T8 Analog Input 3 Mode	{07.015}	Volt (6), Therm Short Cct (7), Thermistor (8), Therm No trip (9)	Volt (6)	RW	Txt				US	
00.022 to 00.028	Not used										
00.029	NV Media Card File Previously Loaded	{11.036}	0 to 999	0	RO	Num		NC	PT		
00.030	Parameter Cloning	{11.042}	None (0), Read (1), Program (2), Auto (3), Boot (4)	None (0)	RW	Txt		NC			
00.031	Drive Rated Voltage	{11.033}	200V (0), 400V (1), 575V (2), 690V (3)		RO	Txt	ND	NC	PT		
00.032	Maximum Heavy Duty Rating	{11.032}	0.000 to 99999.999 A		RO	Num	ND	NC	PT		
00.033	Not used										
00.034	User Security Code	{11.030}	0 to 2147483647	0	RW	Num	ND	NC	PT	US	
00.035	Serial Mode*	{11.024}	8 2 NP (0), 8 1 NP (1), 8 1 EP (2), 8 1 OP (3), 8 2 NP M (4), 8 1 NP M (5), 8 1 EP M (6), 8 1 OP M (7), 7 2 NP (8), 7 1 NP (9), 7 1 EP (10), 7 1 OP (11), 7 2 NP M (12), 7 1 NP M (13), 7 1 EP M (14), 7 1 OP M (15)	8 2 NP (0)	RW	Txt				US	
00.036	Serial Baud Rate*	{11.025}	300 (0), 600 (1), 1200 (2), 2400 (3), 4800 (4), 9600 (5), 19200 (6), 38400 (7), 57600 (8), 76800 (9), 115200 (10)	19200 (6)	RW	Txt				US	
00.037	Serial Address	{11.023}	1 to 247	1	RW	Num				US	
00.038	Current Controller Kp Gain	{04.013}	0 to 30,000	90	RW	Num				US	
00.039	Current Controller Ki Gain	{04.014}	0 to 30,000	2,000	RW	Num				US	
00.040	Not used Maximum Switching Frequency	{05.018}	3 (1) kHz, 4 (2) kHz, 6 (3) kHz, 8 (4) kHz,	3 (1) kHz	RW	Txt		RA		US	
		100.010}	12 (5) kHz, 16 (6) kHz	0 (1) KI IZ	1 1 1 1	1 1		1.47		00	
	0 , ,		12 (0) (112, 10 (0) (112								
00.042	Not used		12 (0) (112, 10 (0) (112								
00.043	Not used Not used		12 (6) N. E., 10 (6) N. E.								
00.043 00.044	Not used Not used Not used	{04.015}		80.0	RW	Num				211	
00.043	Not used Not used	{04.015} {05.007}	1.0 to 3000.0 0.000 to VM_RATED_CURRENT A	89.0 Maximum Heavy Duty Rating (Pr 00.032 {11.032}) A	RW	Num Num		RA		US	
00.043 00.044 00.045 00.046	Not used Not used Not used Inductor Thermal Time Constant Rated Current		1.0 to 3000.0					RA			
00.043 00.044 00.045	Not used Not used Not used Inductor Thermal Time Constant Rated Current Not used	{05.007}	1.0 to 3000.0 0.000 to VM_RATED_CURRENT A	Maximum Heavy Duty Rating (Pr 00.032 {11.032}) A	RW	Num	ND		PT		
00.043 00.044 00.045 00.046	Not used Not used Not used Inductor Thermal Time Constant Rated Current		1.0 to 3000.0 0.000 to VM_RATED_CURRENT A Open-loop (1), RFC-A (2), RFC-S (3), Regen (4) Menu 0 (0), All Menus (1), Read-only Menu 0 (2),	Maximum Heavy Duty Rating			ND ND	RA NC	PT PT		
00.043 00.044 00.045 00.046 00.047 00.048	Not used Not used Not used Inductor Thermal Time Constant Rated Current Not used User Drive Mode	{05.007} {11.031}	1.0 to 3000.0 0.000 to VM_RATED_CURRENT A Open-loop (1), RFC-A (2), RFC-S (3), Regen (4)	Maximum Heavy Duty Rating (Pr 00.032 {11.032}) A Regen (4)	RW	Num Txt	ND	NC	PT		
00.043 00.044 00.045 00.046 00.047 00.048 00.049	Not used Not used Not used Inductor Thermal Time Constant Rated Current Not used User Drive Mode User Security Status	{05.007} {11.031} {11.044}	1.0 to 3000.0 0.000 to VM_RATED_CURRENT A Open-loop (1), RFC-A (2), RFC-S (3), Regen (4) Menu 0 (0), All Menus (1), Read-only Menu 0 (2), Read-only (3), Status Only (4), No Access (5)	Maximum Heavy Duty Rating (Pr 00.032 {11.032}) A Regen (4)	RW RW RW	Num Txt Txt	ND	NC	PT		

^{*} Not available on Unidrive M700.

RW	Read / Write	RO	Read only	Num	Number parameter	Bit	Bit parameter	Txt	Text string	Bin	Binary parameter	FI	Filtered
ND	No default value	NC	Not copied	PT	Protected parameter	RA	Rating dependent	US	User save	PS	Power-down save	DE	Destination

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
			5							- 5		

9.3 Menu 3: Regen Control


In Regen mode the drive assumes the mains is lost, it does not close the input, and does not attempt synchronization if the DC bus voltage is below the levels given in the table below.

If the unit is synchronized and the DC bus voltage falls below this level the unit is disabled and the Regen drive main contactor is opened.

The Regen drive also monitors the voltage at it's AC terminals (U, V and W) for mains loss and if this falls below the levels given in the table, the unit is disabled and the Regen drive main contactor is opened.

Voltage rating	DC voltage mains loss detection level	AC voltage mains loss detection level	DC voltage for supply healthy
200 V	205 Vdc	75 Vac	215 Vdc
400 V	410 Vdc	150 Vac	430 Vdc
575 V	540 Vdc	225 Vac	565 Vdc
690 V	540 Vdc	225 Vac	565 Vdc

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
--------------------	--------------	---------------------	---------------	----------------------------	----------------------------	-----------------	--------------	------------	-------------------	------------------	-------------	-------------------

Table 9-5 Menu 3 Regen parameter descriptions

	Parameter	Range	Default	Туре						
03.001	Reactive Power	VM_POWER kVAr		RO	Num	ND	NC	PT	FI	
03.004	Regen Synchronization Mode	Re-synchronize (0), Delayed Trip (1), Trip (2), Auto-synchronize (3)	Re-synchronize (0)	RW	Txt				US	
03.005	Voltage Set Point	VM_DC_VOLTAGE_SET V	200V drive: 350 V 400V drive: 700 V 575V drive: 835 V 690V drive: 1100 V	RW	Num		RA		US	
03.006	Voltage Controller Proportional Gain Kp	0 to 65535	4000	RW	Num			<u> </u>	US	
03.007	Disable Charge System / Close Contactor	Off (0) or On (1)		RO	Bit	ND	NC	PT		
03.008	Charge System Disabled / Contactor Closed	Off (0) or On (1)		RO	Bit	ND	NC	<u> </u>		
03.009	Synchronized	Off (0) or On (1)		RO	Bit	ND	NC	PT		
03.010	Power Input 1	±100.0 %	0.0 %	RW	Num		NC	<u> </u>		
03.011	Current Trim Mode	Off (0) or On (1)	Off (0)	RW	Bit				US	
03.012	Power Input Mode	Off (0) or On (1)	Off (0)	RW	Bit				US	
03.013	Power Input 2	±100.0 %	0.0 %	RW	Num		NC			
03.014	Power Input 3	±100.0 %	0.0 %	RW	Num		NC			
03.015	Power Input 1 Scaling	0.000 to 4.000	1.000	RW	Num				US	
03.016	Power Input 2 Scaling	0.000 to 4.000	1.000	RW	Num				US	
03.017	Power Input 3 Scaling	0.000 to 4.000	1.000	RW	Num				US	
03.018	Power Input kW	VM_POWER kW	0.000 kW	RW	Num		NC			
03.019	Reactive Power Input Mode	Off (0) or On (1)	Off (0)	RW	Bit				US	
03.020	Reactive Power Input kVAR	VM_POWER kVAr	0.000 kVAr	RW	Num		NC		US	
03.021	Harmonic Reduction Enable	Disabled (0), Imbalance Only (1), All (2)	Imbalance Only (1)	RW	Txt				US	
03.022	Voltage Ramp Time	0.1 to 100.0 V/ms	1.0 V/ms	RW	Num				US	
03.023	Regen Supply Loss AC Level	VM_AC_VOLTAGE_SET V	200V drive: 75 V 400V drive: 150 V 575V drive: 225 V 690V drive: 225 V	RW	Num		RA		US	
03.024	Regen Minimum Frequency	10 to 200 Hz	40 Hz	RW	Num				US	
03.025	Regen Maximum Frequency	10 to 200 Hz	70 Hz	RW	Num				US	
03.026	Regen Minimum Voltage	VM_AC_VOLTAGE V	0 V	RW	Num		RA		US	
03.027	Regen Maximum Voltage	VM_AC_VOLTAGE V	0 V	RW	Num		RA		US	
03.028	Supply Voltage	VM_AC_VOLTAGE_SET V	200V drive: 230 V 50 Hz - 400V drive: 400 V 60 Hz - 400V drive: 460 V 575V drive: 575 V 690V drive: 690 V	RW	Num		RA		US	
03.029	Supply Voltage Detection Mode	Measured (0), User (1), User Delayed (2)	User Delayed (2)	RW	Txt				US	
03.030	Island Detection Enable	Off (0) or On (1)	Off (0)	RW	Bit				US	
03.031	Island Detection Injection Frequency	1Hz (0), 2Hz (1), 4Hz (2)	1Hz (0)	RW	Txt				US	
03.032	Island Detection Level	0 to 100 %		RO	Num	ND	NC	PT		
03.033	Island Detection Synchronization Source Select	Disabled (0), Slot 1 (1), Slot 2 (2), Slot 3 (3), Slot 4 (4)	Disabled (0)	RW	Txt				US	
03.034	Island Detect Synchronization Source	Disabled (0), Slot 1 (1), Slot 2 (2), Slot 3 (3), Slot 4 (4)		RO	Txt	ND	NC	PT		
03.035	Synchronization Headroom	0.0 to 25.0 %	5.0 %	RW	Num				US	
03.036	Estimated Supply Voltage	VM_AC_VOLTAGE V		RO	Num	ND	NC	PT		
03.037	Positive Phase Sequence Volts	VM_AC_VOLTAGE V		RO	Num	ND	NC	PT	FI	
03.038	Negative Phase Sequence Volts	VM_AC_VOLTAGE V		RO	Num	ND	NC	PT	FI	
03.039	Negative Phase Sequence Current Gain	0.00 to 1.00	0.05	RW	Num				US	

RW	Read / Write	RO	Read only	Num	Number parameter	Bit	Bit parameter	Txt	Text string	Bin	Binary parameter	FI	Filtered
ND	No default value	NC	Not copied	PT	Protected parameter	RA	Rating dependent	US	User save	PS	Power-down save	DE	Destination

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
--------------------	--------------	---------------------	---------------	----------------------------	----------------------------	--------------------	--------------	------------	----------------	------------------	-------------	-------------------

	03.0	01	Reactive I	Power					
RO	RO Num				N	D	NC	PT	FI
\$	VM_POWER kVAr				ightharpoons				

Output Power (05.003) and Reactive Power (03.001) are the power and VAR's respectively that flow from the supply to the drive. When Reactive Power (03.001) is positive the phase current flowing from the supply to the drive contains a component that lags the respective phase voltage, and so the Regen system appears like and inductance connected to the supply and imports VARs. When Reactive Power (03.001) is negative the phase current flowing from the supply contains a component which leads the respective phase voltage, and so the Regen system appears like a capacitance connected to the supply and exports VARs.

İ		03.0	04	Regen Sy	nchroniza	tion Mode					
	RV	V	Txt								US
	\$	Re-	-	e (0), Delay uto-synchro		, Trip (2),	仓	F	Re-synchror	nize (0)	

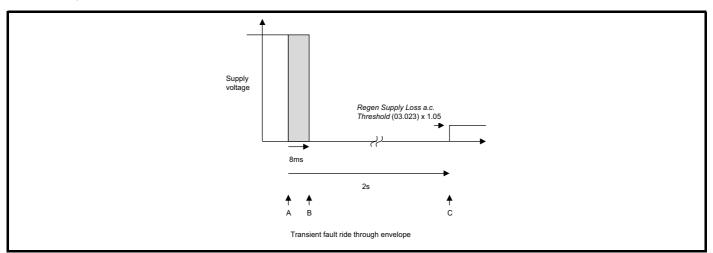
When the system is enabled it attempts to synchronize to the supply. If the supply has significant distortion then the synchronization process may fail and cause an over-current condition to be detected. The system will automatically reset the detected over-current condition and continue to attempt to synchronize. Once the system is synchronized, then if synchronization is subsequently lost, or an over-current condition caused by a supply transient occurs, or supply loss is detected (i.e. *Supply Loss* (10.015) = 1), then the action taken is defined by *Regen Syncronization Mode* (03.004) as given below. (It should be noted that the over-current condition will only be reset automatically ten times in any 10 s period before an *OI ac* trip is produced.)

0: Re-synchronize

If supply loss is detected the system will attempt to re-synchronize when the supply loss condition is no longer active. If an over-current trip occurs the system will attempt to re-synchronize. If Supply Voltage Detection Mode (03.029) = 0 or 2 re-synchronization will only begin if D.c. Bus Voltage (05.005) has stopped rising or falling. For Supply Voltage Detection Mode (03.029) = 0, this is so the supply voltage can be estimated from the level of the DC bus voltage. If Supply Voltage Detection Mode (03.029) = 1 rapid re-synchronization is possible because the system does not wait for the DC bus voltage to stop falling before attempting to re-synchronize.

1: Delayed Trip

The system operates in the same way as "Re-synchronize" mode except that a Line Sync trip is initiated if synchronization takes more than 30 s.


2: Immediate Trip

The system operates in the same way as "Re-synchronize" mode except that a *Line Sync* trip is initiated if synchronization takes more than 30 s, and *Line Sync* trip is produced immediately if supply loss is detected while the system is synchronized.

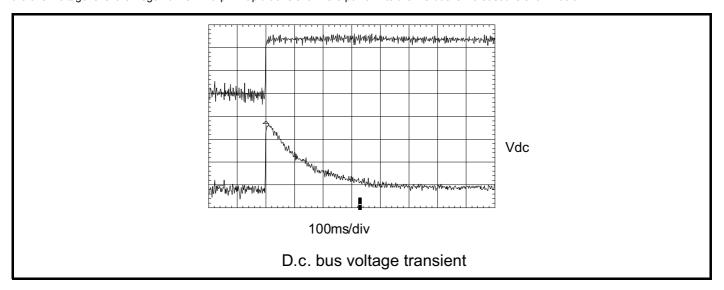
3: Auto-synchronize

If an over-current condition is detected then this is reset. The system will simulate the supply angle based on the supply conditions before the over-current condition and restart the system within 10 ms.

If supply loss is detected the system will simulate the supply angle based on the supply conditions before supply loss was detected. This allows the inverter to remain active during the supply loss period and it is possible for reactive current to flow into the supply in the normal way, but the active current is held at zero. As the active current is held at zero the DC bus must be held at the required level externally, therefore this mode is only suitable for an application where an external system connected to the DC terminals and holds the DC voltage at a suitable level. *Regen Supply Loss AC Level* (03.023) should be set to a level that is higher than the likely voltage seen at the inverter terminals due to any current being fed into the supply (e.g. 10 % of nominal supply voltage) or else the system will attempt to synchronize to its own output voltage. If *Supply Loss* (10.015) remains active for more than 2.0 s then an *Island*.2 trip is initiated. The diagram below shows the timing and minimum voltage envelope for auto-synchronization. If the required timing and voltage for transient fault ride-through lies within this envelope then the auto-synchronization can be used to meet the requirements.

Safety	Introduction	Product	System	Mechanical	Electrical	Getting	Optimization	Parameters	Technical	Component	Diagnostics	UL
information	introduction	Information	design	Installation	Installation	started	Optimization	raiailleteis	data	sizing	Diagnostics	Information

At point 'A' the fault occurs and the voltage falls below *Regen Supply Loss AC Level* (03.023). During the period from point 'A' to point 'B' the Regen system does not allow either active or reactive power to flow to/from the supply. The maximum time between point 'A' and point 'B' is 8 ms, but this may be shorter depending on the size of the current transient caused by the fault. If the current transient exceeds the over-current threshold then the system will take 8 ms to recover, otherwise there is no delay and the Regen system will remain active throughout the fault. From point 'B' to point 'C', where the supply voltage remains below *Regen Supply Loss AC Level* (03.023) x 1.05, auto-synchronization is active and it is possible to request reactive power flow either using *Reactive Power Input kVAR* (03.020) or *Reactive Current Reference* (04.008). During this period active power flow is not possible as it is disabled by the Regen system. If the supply voltage remains below *Regen Supply Loss AC Level* (03.023) x 1.05 for more than 2 s the Regen system will trip. Once the supply voltage has risen above *Regen Supply Loss AC Level* (03.023) x 1.05 auto-synchronization is disabled and active power flow is re-enabled. The request for reactive and active power must be made by the user during supply transient ride-through. It is also likely that the supply voltage recovery characteristic envelope must lie within the envelope given and that additional supply voltage monitoring will be required to take action if the required recover does not occur.


	03.0	05	Voltage S	et Point						
R۷	٧	Num						RA		US
\$		VM_[OC_VOLTA	.GE_SET V	/	$\hat{\mathbb{T}}$	5	200V drive: 400V drive: 575V drive: 90V drive:	700 V 835 V	

The Regen drive attempts to hold the DC bus voltage at the level specified by *Voltage Set Point* (03.005). The *Voltage Set Point* (03.005) must always be higher than the peak of the line to line supply voltage if the unit is to operate correctly. The default values can be used with most supplies giving a reasonable level of control headroom. However, with higher voltage supplies the set-point must be raised.

I		03.0	06	Voltage C	ontroller P	Proportion	al Gai	n Kp		
	RV	RW Num								US
	Û	0 to 65535					\uparrow		4000	

The DC bus voltage is controlled by a PI controller, which provides the reference for the real component of current from the inverter terminals to the supply. The power input parameters (*Power Input 1* (03.010), *Power Input 2* (03.013), *Power Input 3* (03.014) or *Power Input kW* (03.018)) are provided to give a power feed forward term, at the output of the PI controller, from the motor drives connected to the DC bus. If possible the power feed forwards should be used so that the PI controller is simply providing a trim to the DC bus voltage. In most cases the default voltage controller gains can be used, however the effect of the gains and the response of the voltage controller is discussed below.

For the purpose of analysing the voltage controller response it is assumed that a power feed-forward term is not provided. If the power flow from the DC bus is increased (i.e. motor is accelerated by a motor drive connected to the DC bus) the DC bus voltage will fall, but the minimum level will be limited to just below the peak rectified level of the supply provided the maximum rating of the unit is not exceeded. If the power flow to the DC bus is increased (i.e. motor is decelerated by a motor drive connected to the DC bus) the DC bus voltage will rise. If the peak of the DC bus voltage reaches the over voltage level the Regen drive will trip. A rapid transient where power into the DC bus is increased is shown below.

Safety	Introduction	Product	System	Mechanical	Electrical	Getting	Ontimization	Barametera	Technical	Component	Diagnostics	UL
information	Introduction	Information	design	Installation	Installation	started	Optimization	Parameters	data	sizing	Diagnostics	Information

The example shown is for a very rapid load change where the torque reference of the motor drive has been changed instantly from one value to another. The peak of the resulting transient is

 $\Delta Vdc = 191680 \times Pd / (vII \times Kp \times Kc) Volts$

and the time constant of the recovery is Kp / 30520 seconds.

where:

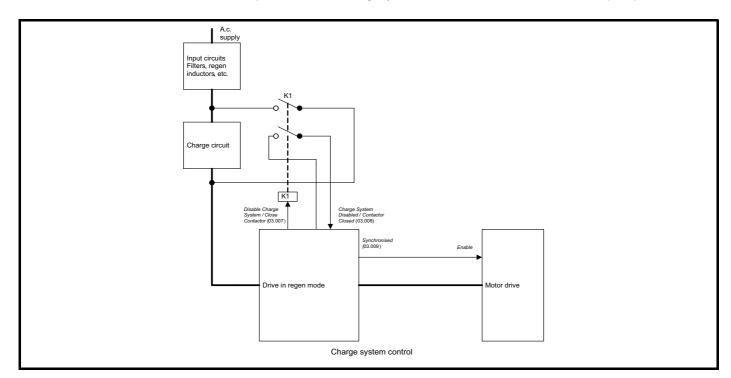
Pd is the transient change of power flow

vII is the line to line supply voltage

Kp = Voltage Controller Proportional Gain Kp (03.006)

Kc = Full Scale Current Kc (11.061)

For example, if Pd=7.5 kW, vII=400 V, Kp=4000, Kc=38.222 A then ΔVdc=23.5 V and the time constant is 131 ms.


In the example given there is a very rapid change of power flow. The transient DC bus voltage change can be substantially reduced by introducing a time constant into the power transient. For example a filter could be included between the speed controller and current controller in the motor drive with Current Reference Filter 1 Time Constant (04.012). A time constant of 20 ms reduces the voltage transient by 25 % and a time constant of 40 ms reduces the voltage transient by 50 %. In most cases it is not desirable to reduce the performance of the motor drive, and so as already mentioned the best solution is to use a power feed forward term from the motor drive.

So far the discussion has been related to the DC bus voltage controller gain, however, the controller provides the real current reference to the Regen drive current controllers, and so the current controller gains affect the response of the voltage controller. If the default voltage controller gain is used and it is possible to obtain a stable response from the current controllers with their default gains then the voltage controller response will be stable. However, in some cases it will be necessary to reduce the current controller gains to make these controllers stable, in which case it is likely that the voltage controller gain will need to be reduced to make this controller stable.

It is possible to disable the DC bus voltage controller by setting Voltage Controller Proportional Gain Kp (03.006) to zero. This sets both the proportional and integral gains to zero. Once the controller is disabled the flow of power through the Regen drive can be defined using the power input parameters (Power Input 1 (03.010), Power Input 2 (03.013), Power Input 3 (03.014), Power Input kW (03.018)) or Active Current (04.002). This method of control can only be used if the DC bus voltage is defined at a voltage above the level of the rectified AC supply to the Regen drive by another system connected to the DC terminals.

	03.0	007	Disable C	harge Sys	tem / Clos	e Cor	itacto	r		
RO	C	Bit				N	D	NC	PT	
Û			Off (0) or C	n (1)		ightharpoons				

In Regen mode some form of charging system must be used to limit the current taken from the supply to charge the DC bus capacitors when the supply is first connected to the inverter terminals (i.e. UVW). An external soft start resistor or the thyristor charging system in the drive may be used. The Regen mode sequencer provides an output which should be used to disable or enable the charge system (Disable Charge System / Close Contactor (03.007)). This should be routed to a digital output, so that when Disable Charge System / Close Contactor (03.007) = 0 the charge system is connected between the supply and the Regen system, and when Disable Charge System / Close Contactor (03.007) = 1 the charge system is bypassed and the inverter terminals are connected to the supply. This is demonstrated by the simplified charge system diagram below. It should be noted that this is used to show the connections required between the charge system and the drive, and does not show a complete power circuit.

Safety	Introduction	Product	System	Mechanical	Electrical	Getting	Optimization	Parameters	Technical	Component	Diagnostics	UL
information	introduction	Information	design	Installation	Installation	started	Optimization	raiailleteis	data	sizing	Diagnostics	Information

It is possible that the charge circuit could be damaged if the motor drive is active while the charge circuit has not been bypassed or disconnected. To prevent damage from occurring, the state of the charge system should be passed to *Charge System Disabled / Contactor Closed* (03.008) via a digital input so that the Regen system can monitor the actual charge system state. It is also necessary to pass an indication of the state of the charge system and the Regen system to the motor drive. The "synchronized" indication is used to enable the motor drive, so that it will only be enabled when the charge system is disabled and the Regen system is enabled and fully synchronized.

	03.0	08	Charge Sy	ystem Disa	abled / Cor	ntacto	r Clo	sed		
RC	O Bit					N	D	NC		
\$			Off (0) or C	On (1)		\Diamond				

See Disable Charge System / Close Contactor (03.007).

	03.0	09	Synchron	ized						
R) Bit					N	D	NC	PT	
\$			Off (0) or C	n (1)		$\hat{\Gamma}$				

See Disable Charge System / Close Contactor (03.007).

	03.0	010	Power Inp	out 1						
	₹W	W Num					NC			
Û		±100.0 %				ightharpoons		0.0 %)	

Power feed-forward compensation can be used to reduce the transient DC bus voltage produced when a fast load transient occurs on a drive connected to the DC terminals of the Regen drive. If *Power Output* (07.033) from a motor drive is routed to an analog output with unity scaling it will produce full scale output when the power is equal to 3 x (VM_DC_VOLTAGE[MAX] / $2\sqrt{2}$) x *Full Scale Current Kc* (11.061). If this signal is connected to an analog input on the Regen drive, the input is routed to *Power Input 1* (03.010) and *Power Input 1 Scaling* (03.015) is set to the ratio of the current scaling values for the motor drive and Regen drives (i.e. Motor drive *Full Scale Current Kc* (11.061) / Regen drive *Full Scale Current Kc* (11.061)) then the correct power feed-forward term will be provided. The default value for *Power Input 1 Scaling* (03.015) is 1.000, and so unless the Regen and motor drives are the same size this parameter will need to be adjusted.

Up to 3 motor drives connected to the Regen drive DC terminals can use this system to provide power feed-forward as each of the power inputs are summed to give the final power feed-forward term. (It should be noted that a maximum of two analog inputs are provided on the drive with 250 μs update rate. If the third input is used the update rate is 4 ms, and so this should only be used for a motor drive with limited dynamic performance.) If more motor drives are connected to the DC terminals of the Regen drive, or a digital power feed-forward system is required, then *Power Input kW* (03.018) should be used. The power in kW can be transferred from each motor drive using fast synchronous communications to an application module in the Regen drive. The total power in kW should be calculated by the applications module and then written to the *Power Input kW* (03.018). For the power feed-forward to be effective data should be transferred every 250 μs with the minimum delay (i.e. 500 μs) and the total power written to *Power Input kW* (03.018) every 250 μs.

It should be noted that the polarity of all the power feed-forward parameters is that positive values cause power to flow from the supply and negative values cause power to flow into the supply.

	03.0	11	Current T	rim Mode					
RV	W Bit								US
Û	Off (0) or On (1)				ightharpoons		Off (0)	

A current feedback trimming routine runs before the Regen drive is enabled to minimise offsets in the current feedback. If *Current Trim Mode* (03.011) = 0 the current offset trim is only carried out once when the drive comes out of the under voltage state and is not repeated unless the supply is removed and reapplied. The current offset trim is only carried out when the charge system is enabled (contactor open) as this minimizes current flowing into the inverter terminals due to noise on the supply that may disturb the current offset trimming.

Current Trim Mode (03.011) should be set to one if the current offset trim is required each time when the Regen drive is enabled. To ensure that the current offset trim is not disturbed by noise on the supply, the charge system is enabled before the current offset trim and then disabled again before the Regen drive goes into its active state. This causes the charge system contactors to switch each time the Regen drive is enabled.

	03.0	12	Power Inp	out Mode					
RV	W Bit							US	
Û	Off (0) or On (1)				\Diamond		Off (0))	

If Power Input Mode (03.012) = 0 the power feed-forward is provided by the parameters that are intended for use with analog inputs. If Power Input Mode (03.012) = 1 the power feed-forward is provided by Power Input kW (03.018).

	03.0	13	Power Input 2									
RV	N	Num						NC				
Û	±100.0 %					\Diamond			0.0 %	ı		

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
--------------------	--------------	---------------------	---------------	----------------------------	----------------------------	-----------------	--------------	------------	-------------------	------------------	-------------	-------------------

See Power Input 1 (03.010).

	03.0	14	Power Input 3									
RV	RW Num							NC				
Û	±100.0 %			ightharpoons			0.0 %	1				

See Power Input 1 (03.010).

	03.0	15	Power Inp	out 1 Scali	ng					
R۱	W Num									US
Û	0.000 to 4.000					ightharpoons		1.000	l	

See Power Input 1 (03.010).

	03.0	16	Power Inp	out 2 Scali	ng					
R۱	W Num									US
Û	0.000 to 4.000					ightharpoons		1.000	l	

See Power Input 1 (03.010).

	03.0	17	Power Input 3 Scaling								
RV	RW Num										US
Û	0.000 to 4.000					\uparrow			1.000	1	

See Power Input 1 (03.010).

	03.0)18	Power Input kW									
F	RW Num							NC	RA			
Û		VM_POWER kW				ightharpoons			0.000 k	W		

See Power Input 1 (03.010).

	03.0	19	Reactive I	Power Inp	ut Mode		_	_	_	
RV	W Bit									US
Û	Off (0) or On (1)					\Rightarrow		Off (0))	

It is possible to control the reactive component of current from the AC terminals of the Regen drive. When this component is positive the reactive current flowing from the supply to the Regen drive lags the voltage. When this component is negative the reactive current flowing from the supply to the Regen drive leads the voltage. Reactive component control can be used even if the DC bus voltage controller is active, because the voltage controller only affects the real current component. If *Reactive Power Input Mode* (03.019) = 0 the reactive current can be defined with *Reactive Current Reference* (04.008). If *Reactive Power Input Mode* (03.019) = 1 the reactive kVAR can be specified with *Reactive Power Input kVAR* (03.020).

	03.0	20	Reactive	Power Inp	ut kVAR	03.020 Reactive Power Input kVAR									
R۱	N	Num						NC	RA		US				
Û	VM_POWER kVAr					\Box			0.000 k\	/Ar					

See Reactive Power Input Mode (03.019).

	03.0	21	Harmonic	Reduction	n Enable					
RV	V Txt									US
\$	Disabled (0), Imbalance Only (1), All (2)					ightharpoons	li	mbalance C	Only (1)	

Safety	Introduction	Product	System	Mechanical	Electrical	Getting	Optimization	Parameters	Technical	Component	Diagnostics	UL
information	introduction	Information	design	Installation	Installation	started	Optimization	raiailleteis	data	sizing	Diagnostics	Information

Even with the optimum DC bus voltage and current controller set-up it is possible for supply voltage distortion to cause harmonic distortion in the AC currents between the supply and the Regen drive. The Regen drive includes an additional system to reduce imbalance, 5th harmonics and 7th harmonics in the AC currents. *Harmonic Reduction Enable* (03.021) defines the type of distortion reduction required. It should be noted that the Regen system input filter will absorb 5th and 7th harmonic currents if there is 5th or 7th harmonic supply voltage distortion. The Regen drive cannot reduce this current, but can minimise the 5th and 7th harmonic current due to 5th and 7th harmonic voltage distortion between the supply and the inverter.

Harmonic Reduction Enable (03.021)	Distortion reduced
0	None
1	Due to voltage imbalance
2	Due to voltage imbalance, 5th and 7th harmonics

If Harmonic Reduction Enable (03.021) > 0 then Phase Loss (10.081) is set if Negative Phase Sequence Volts (03.038) > Positive Phase Sequence Volts (03.037) / 2 for more than 100 ms. It should be noted that Phase Loss (10.081) is only set when the Regen drive is active, so if the transient caused by an asymmetrical fault causes the system to trip then Phase Loss (10.081) is not set.

Each of the additional controllers used to minimise currents due to imbalance, 5th and 7th harmonic distortion have an integral controller similar to the controller for normal supply frequency currents. The gains for the 5th and 7th harmonic current control are at a fixed low level, however, the gain for minimization of currents due to imbalance can be adjusted by the user with *Negative Phase Sequence Current Gain* (03.039). The default value is low, and so the response due to a change in supply imbalance is relatively slow. For most applications the gain can be left at the default level, but where a fast response is required, i.e. continued operation in the presence of an asymmetrical fault, the level should be increased. *Negative Phase Sequence Current Gain* (03.039) defines the gain used for control of currents due to imbalance as a proportion of *Current Controller Ki Gain* (04.014). Care should be taken when increasing this value as the system stability may be reduced particularly with a weak supply.

	03.0	22	Voltage R	amp Time						
RV	N	Num								US
Û	0.1 to 100.0 V/ms					ightharpoons		1.0 V/n	าร	

When a Regen drive is enabled and has synchronized to the supply, the DC bus voltage is at a level equal to the peak line to line voltage. The voltage controller is then enabled and attempts to raise the DC bus voltage to the set-point defined by *Voltage Set Point* (03.005). The voltage reference is ramped up to the required level at a rate defined by *Voltage Ramp Time* (03.022) in V/ms. The default value of 1.0 V/ms ensures limited over-shoot when the DC bus voltage reaches the required level. If a shorter synchronization time is required then the ramp rate can be increased, however care must be taken to avoid over-voltage trips particularly if a high level is used for the DC bus voltage set-point. If a faster ramp rate and high set-point are required it may be necessary the increase *Voltage Controller Proportional Gain Kp* (03.006) to minimise over-shoot.

		03.0	23	Regen Su	pply Loss	AC Level					
ľ	R۷	٧	Num								US
	Û		VM_A	AC_VOLTA	GE_SET V	,	\Diamond		200V drive: 400V drive: 575V drive: 690V drive:	150 V 225 V	

If the supply voltage falls below *Regen Supply Loss AC Level* (03.023) x 0.95 then supply loss is detected and *Supply Loss* (10.015) is set to one. The supply voltage must rise above *Regen Supply Loss AC Level* (03.023) x 1.05 to remove the supply loss condition and for *Supply Loss* (10.015) to be reset to zero. When the system is not synchronized, *Estimated Supply Voltage* (03.036) is used to represent the supply voltage, but when the system is synchronized the output of the inverter (*Output Voltage* (05.002)) is used.

If Supply Voltage Detection Mode (03.029) = 0 (Measured) then Estimated Supply Voltage (03.036) is derived from the DC bus voltage. When the system is not synchronized, Estimated Supply Voltage (03.036) is set up with a derived value, but only after the DC bus voltage has stopped rising or falling. This ensures a correct estimate because the supply voltage has stopped causing the DC bus voltage to rise and the DC bus voltage is not still falling because the system was previously active. When the system synchronizes, Estimated Supply Voltage (03.036) is left at the value derived before synchronization and will only be modified again when the system is not synchronized and the DC bus voltage is stable. It should be noted that if the supply is removed and then re-applied before the DC bus voltage falls below the under-voltage threshold, it is possible for the transient caused by re-applying the supply to give an indication that the DC bus voltage is stable. If this occurs the measured DC bus supply voltage may be higher than the actual supply voltage. As the accuracy of measured supply voltage is not critical in setting up the current controllers etc. this will not generally cause a problem. If it is a problem then Supply Voltage Detection Mode (03.029) should be set to a value other than zero, so that the estimated supply voltage can be defined by the user.

If Supply Voltage Detection Mode (03.029) = 1 (User) then Estimated Supply Voltage (03.036) is set directly from Supply Voltage (03.028). This can either be set to a fixed value or it can be controlled from voltage magnitude feedback via an analog input. When this setting is used the system does not wait for the DC bus voltage to stop rising or falling, and so re-synchronization is quicker when the supply is restored after a short supply loss, or the system is disabled and then re-enabled rapidly. However, the system will continuously attempt to re-synchronize after the supply is removed. It is likely that some transient voltages will occur at the inverter terminals as the DC bus voltage decays.

If Supply Voltage Detection Mode (03.029) = 2 (User Delayed) the system operates in the same way as when Supply Voltage Detection Mode (03.029) = 1 (User) except that re-synchronization when the supply is restored after supply loss, or when the system is enabled, does not start until the DC bus voltage has stopped rising or falling.

Safety	Introduction	Product	System	Mechanical	Electrical	Getting	Ontimization	Barametera	Technical	Component	Diagnostics	UL
information	Introduction	Information	design	Installation	Installation	started	Optimization	Parameters	data	sizing	Diagnostics	Information

As well as being used to give the supply loss condition, *Estimated Supply Voltage* (03.036) is also used to pre-set the current controllers during synchronization and after the system has automatically reset an over-current condition when synchronized (i.e. when *Regen Synchronization Mode* (03.004) = 3). During synchronization the full value of *Estimated Supply Voltage* (03.036) is used to give the minimum current transient. After automatic reset of an over-current condition then *Estimated Supply Voltage* (03.036) / 2 is used because this mode can be used to ride through supply short circuits and the supply voltage may change rapidly between the normal supply voltage and zero. By using half the nominal supply voltage the current transient is minimized for either condition.

	03.0	24	Regen Mi	nimum Fre	equency	_			
R۷	W Num								US
Û	10 to 200 Hz					\Rightarrow		40 Hz	

Frequency limits defined by *Regen Minimum Frequency* (03.024) and *Regen Maximum Frequency* (03.025) are applied to the Regen system output. A margin of 5 Hz or more should be allowed outside the likely supply frequency range to enable the Regen system to operate. If the Regen system supply frequency is within approximately 5 Hz of either limit for 100 ms the system will not remain synchronized and will attempt to re-synchronize. While the supply frequency remains within approximately 5 Hz of either limit the system will not be able to synchronize successfully. The frequency limits are important if the supply is removed when the Regen system is active, as the system could remain active, particularly if energy is fed into the DC bus, with an uncontrolled output frequency and voltage.

	03.0	25	Regen Ma	ximum Fr	equency				
R۱	W Num								US
Û	10 to 200 Hz					\Diamond		70 Hz	

See Regen Minimum Frequency (03.024).

	03.0	26	Regen Mi	nimum Vol	tage				
F	RW	W Num						RA	US
Û	VM_AC_VOLTAGE V					\Diamond		0 V	

Supply voltage range detection can be provided. If $Regen\ Maximum\ Voltage\ (03.027)$ is set to its default of zero, then additional supply voltage checking is disabled. If $Regen\ Minimum\ Voltage\ (03.026)$ is set to any other value and the supply voltage is outside the range defined by $Regen\ Maximum\ Voltage\ (03.027)$ and $Regen\ Minimum\ Voltage\ (03.026)$ for more than 100 ms a $Voltage\ Range\ trip$ is initiated with sub-trip 1 for a voltage below the minimum threshold or sub-trip 2 for voltage above the maximum threshold. If $Regen\ Maximum\ Voltage\ (03.027) \le Regen\ Minimum\ Voltage\ (03.026)$ then the trip is initiated repeatedly.

İ		03.0	27	Regen Ma	ximum Vo	Itage				
	RV	W Num							RA	US
	Û	VM_AC_VOLTAGE V					\Diamond		0 V	

See Regen Minimum Voltage (03.026).

	03.02	28	Supply Vo	ltage						
R۱	٧	Num						RA		US
\$		VM_A	AC_VOLTA	GE_SET V	,	⇧	50 H 60 H	200V drive: Iz - 400V d Iz - 400V d 575V drive: 690V drive:	rive: 400 V rive: 460 V 575 V	

See Regen Supply Loss AC Level (03.023).

	03.029 Supply Voltage Detection Mo									
RV	RW Txt									US
Û	① Measured (0), User (1), User Delayed (2)					\Rightarrow		User Delay	ed (2)	

See Regen Supply Loss AC Level (03.023).

	03.030 Island Detection Enable									
RV	RW Bit									US
Û	Off (0) or On (1)				\Rightarrow		Off (0))		

If *Island Detection Enable* (03.030) is set to one then the detection system is enabled and injects a test current with a frequency defined by *Island Detection Injection Frequency* (03.031). The *Island Detection Level* (03.032) shows the detection level with respect to the threshold, and if the level reaches 100 % an *Island.1* trip is initiated.

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
--------------------	--------------	------------------------	---------------	----------------------------	----------------------------	--------------------	--------------	------------	----------------	------------------	-------------	-------------------

The following should be noted:

- 1. It is possible that high levels of active current that contain components similar to the injection frequency may cause false detection of an island condition and this is more likely the higher the injection frequency.
- 2. The detection system will detect an island condition in a time from 3 to 4 cycles of the injection frequency, therefore a higher injection frequency gives faster detection.
- 3. Changing Island Detection Injection Frequency (03.031) while the system is running may cause an Island.1 trip.

The injection frequency used by the island detection system affects the maximum island detection time as given in the table below:

Injection frequency	Maximum detection time
1 Hz	4 s
2 Hz	2 s
4 Hz	1 s

For the island detection system to comply with IEEE 1547 the detection time must be 2 s or less, and so an injection frequency of 2 or 4 Hz must be used. For the island detection system to comply with VDE 0126-1-1 the detection time must be 5 s or less, and so any of the injection frequencies may be used.

	03.0)31	Island Detection Injection Frequency									
R\	W	Txt									US	
\hat{v}	↓ 1Hz		(0), 2Hz (1), 4Hz (2)		$\hat{\Gamma}$			1Hz (0)		

See Island Detection Enable (03.030).

	03.0	32	Island De	tection Le	vel					
RC)	Num				N	D	NC	PT	
Û	0 to 100 %					\Diamond				

See Island Detection Enable (03.030).

	03.0	033	Island Det	tection Sy	nchronizat	ion S	ource	Select			
RV	V	Txt									US
\$	RW Txt Disabled (0), Slot 1 (1), Slot 2 (2), Slot 3 (3 Slot 4 (4)					\Rightarrow			Disabled	(0)	

If Island Detection Synchronization Source Select (03.033) is set to its default value of zero then the frequency of the current injected to detect an island condition is defined by the Regen system. If Island Detection Synchronization Source Select (03.033) is set to a non-zero value to select an option module, and the option module provides a suitable clock, then the injected current is synchronized to the clock. This allows the injected current from a number of Regen systems to be synchronized to a master clock. If the option module does not provide a suitable clock then the frequency is defined by the Regen system. The source being used is given in Island Detect Synchronization Source (03.034).

		03.034 Island Detect Synchroniza O Txt					Soul	ce			
ľ	RC	RO Txt					N	D	NC	PT	
	Û	Disabled (0), Slot 1 (1), Slot 2 (2), Slot 3 (4)		Slot 3 (3),	\Rightarrow						

See Island Detection Synchronization Source Select (03.033).

	03.0	35	Synchron	Synchronization Headroom									
RV	W Num										US		
Û	0.0 to 25.0 %		\Rightarrow			5.0 %	ı						

Each time a synchronization attempt is made the DC bus voltage is increased because of current that is built up in the inductors connected between the supply and the Regen system. As the current decays energy is transferred from the supply to the DC bus capacitors, and the energy stored in the inductors is also transferred to the DC bus capacitors. To prevent an over-voltage trip during synchronization or re-synchronization the system will prevent this process from starting if the DC bus voltage is above the level defined by Maximum DC bus voltage x Synchronization Headroom (03.035). For example the full scale DC bus voltage for a 400 V drive is 830 V, so with the default setting of 5 % the DC bus voltage must be less than 830 V x 95 % = 788.5 V before the synchronization process will begin. If the recommended components are connected between the supply and the Regen system the rise in the DC bus voltage during synchronization requires less than 5 % headroom. If alternative inductors are used that are significantly larger than the recommended values or the supply inductance is very high it may be necessary to increase the headroom.

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
--------------------	--------------	------------------------	---------------	----------------------------	----------------------------	--------------------	--------------	------------	----------------	------------------	-------------	-------------------

	03.036 Estimated Supply Voltage Num									
RO	C	Num			N	D	NC	PT		
Û		VM	/_AC_VOL	TAGE V		ightharpoons				

See Regen Supply Loss AC Level (03.023).

	03.0	37	Positive F	hase Seq	uence Volt	s				
RO	RO Num					N	D	NC	PT	FI
Û	VM_AC_VOLTAGE V		ightharpoons							

The supply voltage at its fundamental frequency can be represented as a combination of positive, negative and zero sequence components. The Regen system supply voltage cannot contain any zero sequence components because there is no neutral connection. The negative phase sequence component is an indication of the level of supply imbalance. *Positive Phase Sequence Volts* (03.037) and *Negative Phase Sequence Volts* (03.038) show the positive and negative phase sequence components of voltage at the inverter terminals in r.m.s. line to line Volts. Note that *Negative Phase Sequence Volts* (03.038) is zero unless *Harmonic Reduction Enable* (03.021) > 0.

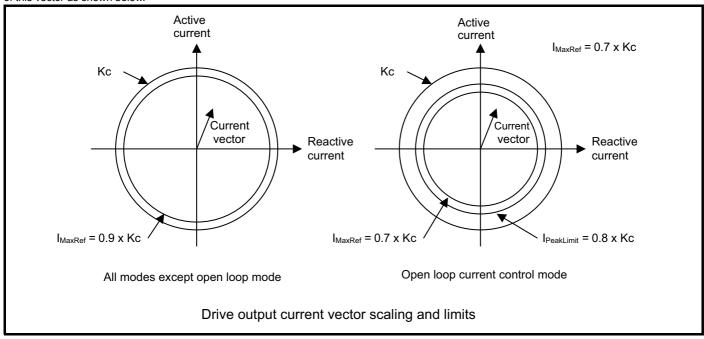
I		03.0	38	Negative	Phase Sec	uence Vol	ts				
I	RO	RO Num					N	D	NC	PT	FI
I	Û	VM_AC_		/_AC_VOL	TAGE V		ightharpoons				

See Positive Phase Sequence Volts (03.037).

	03.0	39	Negative	Phase Sec	juence Cur	rent	Gain		
RV	N	Num							US
Û	0.00 to			.00		\Rightarrow		0.05	

See Harmonic Reduction Enable (03.021).

Safety	Introduction	Product	System	Mechanical	Electrical	Getting	Ontimization	Doromotoro	Technical	Component	Diagnostics	UL
information	Introduction	Information	design	Installation	Installation	started	Optimization	Parameters	data	sizing	Diagnostics	Information


9.4 Menu 4: Current control

In Regen mode separate current control is provided for the active and reactive currents. The active current reference is normally produced by the DC bus voltage controller and power feed-forwards system, although it is possible for the user to define the active current reference if required. The reactive current reference is either defined directly from the *Reactive Current Reference* (04.008) or from the *Reactive Power Input kVAR* (03.020). See Menu 3 for more details.

Drive rating information

Current rating

The drive output currents can be represented as a vector. The limits and the scaling applied to the drive output currents are defined by the magnitude of this vector as shown below.

Throughout this section Rated Current (05.007) and other parameters related to motor 1 are used.

The full scale current is the maximum current that the drive can measure and if the current exceeds this level the drive produces an over current trip. Kc is the current scaling for the drive and is used in determining the control performance of the drive. This is given in *Full Scale Current Kc* (11.061) and Kc is equal the full scale current in r.m.s. Amps. (Note that this is a change from Unidrive SP which used the full scale current multiplied by 0.45 for Kc.)

The maximum current reference is the highest magnitude of the current reference vector in the drive under any circumstances. The area between the maximum current reference and the full scale current provides headroom to allow for overshoot in the current controllers without tripping the drive. In all modes except Open-loop mode, the current limits can be adjusted so that the maximum current reference vector (IMaxRef) is equal to 0.9 x Kc provided *Rated Current* (05.007) is set to the *Maximum Heavy Duty Rating* (11.032) or less. If *Rated Current* (05.007) is set to a higher level then the current limits can be adjusted so that the maximum current reference vector (IMaxRef) is equal to 1.1 x *Maximum Rated Current* (11.060) or 0.9 x Kc whichever is lower.

The drive can have a heavy duty rating intended for applications where high overload current may be required under transient conditions, or it can have a normal duty rating where a lower level of overload current is required. The duty rating is selected automatically by the drive based on the setting of *Rated Current* (05.007). The *Maximum Heavy Duty Rating* (11.032) and *Maximum Rated Current* (11.060) are fixed for each drive size and the table below shows the possible duty ratings that can be selected depending on the levels of these parameters.

Conditions	Possible duty ratings
Maximum Heavy Duty Rating (11.032) = 0.00	Normal duty operation only
Maximum Heavy Duty Rating (11.032) < Maximum Rated Current (11.060)	Heavy duty operation if rated current > MAX, otherwise normal duty operation
Maximum Heavy Duty Rating (11.032) = Maximum Rated Current (11.060)	Heavy duty operation only

The different duty ratings modify the inductor protection characteristic (see *Inductor Thermal Time Constant* (04.015)). The different duty ratings can also change the level of IMaxRef as described previously.

In a drive that contains multiple power modules *Full Scale Current Kc* (11.061) is the full scale current of an individual module multiplied by the number of modules. *Maximum Heavy Duty Rating* (11.032) and *Maximum Rated Current* (11.060) are the value for an individual module multiplied by the number of modules.

Variable Maximums applied to the current limits

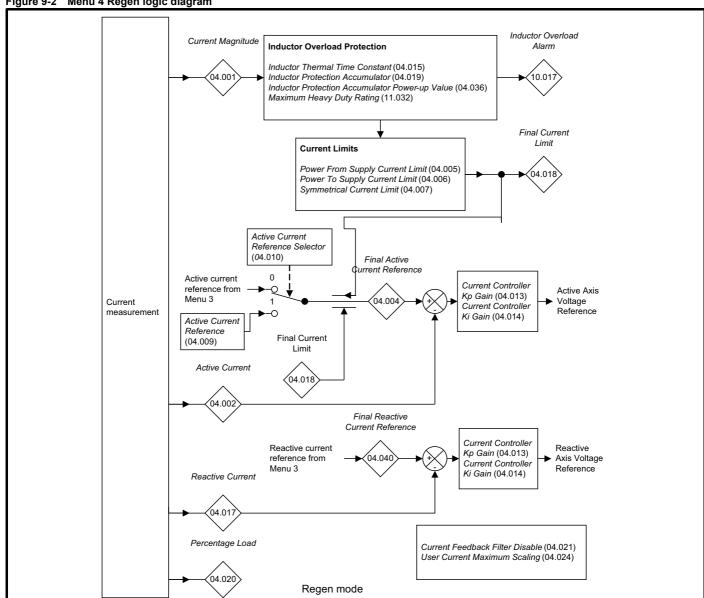
In Regen mode the drive orientates the output current vector to align with the voltage vector that represents the voltage at its terminals, and so unless specifically required, all the current is active current and there is no reactive current. Therefore the maximum value for the current limit parameters is calculated as:

VM_MOTOR1_CURRENT_LIMIT = (I_{MaxRef} / I_{Rated}) x 100%

Safety	Introduction	Product	System	Mechanical	Electrical	Getting	Optimization	Parameters	Technical	Component	Diagnostics	UL
information	Introduction	Information	design	Installation	Installation	started	Optimization	r arameters	data	sizing	Diagnostics	Information

where:

 I_{Rated} = Rated Current (05.007)


A maximum is applied to the reactive current reference parameter so that the combined current reference for the active and reactive currents does not exceed I_{MaxRef}.

VM_REGEN_REACTIVE = √(VM_MOTOR1_CURRENT_LIMIT² – I_{l imit}²)

where

I_{Limit} is gives the highest level of the active current reference that can occur. This value is defined by the current limit values. If the current limits are all set to their maximum values (i.e. VM_MOTOR1_CURRENT_LIMIT) then there is no current capability left for the reactive current. However, if the current limits are reduced the resulting headroom can be used for the reactive current. I_{Limit} is defined by a combination of all the current limits excluding any reduction of the current limit due to the motor thermal model, It should be noted that if Island Detection Enable (03.030) = 1 then VM_REGEN_REACTIVE is reduced by 5 % to allow for the islanding system injection current.

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
--------------------	--------------	------------------------	---------------	----------------------------	----------------------------	--------------------	--------------	------------	-------------------	------------------	-------------	-------------------

Table 9-6 Menu 4 Regen parameter descriptions

	Parameter	Range(ᡎ)	Default (⇔)			Тур	е		
04.001	Current Magnitude	0.000 to VM_DRIVE_CURRENT_UNIPOLAR A		RO	Num	ND	NC	PT	FI
04.002	Active Current	VM_DRIVE_CURRENT A		RO	Num	ND	NC	PT	FI
04.004	Final Active Current Reference	VM_TORQUE_CURRENT %		RO	Num	ND	NC	PT	FI
04.005	Power From Supply Current Limit	0.0 to VM_MOTOR1_CURRENT_LIMIT %	175.0 % *	RW	Num		RA		US
04.006	Power To Supply Current Limit	0.0 to VM_MOTOR1_CURRENT_LIMIT %	175.0 % *	RW	Num		RA		US
04.007	Symmetrical Current Limit	0.0 to VM_MOTOR1_CURRENT_LIMIT %	175.0 % *	RW	Num		RA		US
04.008	Reactive Current Reference	VM_REGEN_REACTIVE%	0.0 %	RW	Num				US
04.009	Active Current Reference	VM_USER_CURRENT %	0.0 %	RW	Num				US
04.010	Active Current Reference Selector	Off (0) or On (1)	Off (0)	RW	Bit				US
04.013	Current Controller Kp Gain	0 to 30000	90	RW	Num				US
04.014	Current Controller Ki Gain	0 to 30000	2000	RW	Num				US
04.015	Inductor Thermal Time Constant	1.0 to 3000.0 s	89.0 s	RW	Num				US
04.017	Reactive Current	VM_DRIVE_CURRENT A		RO	Num	ND	NC	PT	FI
04.018	Final Current Limit	VM_TORQUE_CURRENT %		RO	Num	ND	NC	PT	
04.019	Inductor Protection Accumulator	0.0 to 100.0 %		RO	Num	ND	NC	PT	PS
04.020	Percentage Load	VM_USER_CURRENT %		RO	Num	ND	NC	PT	FI
04.021	Current Feedback Filter Disable	Off (0) or On (1)	Off (0)	RW	Bit				US
04.024	User Current Maximum Scaling	0.0 to VM_TORQUE_CURRENT_UNIPOLAR %	175.0 % *	RW	Num		RA		US
04.036	Inductor Protection Accumulator Power-up Value	Power down (0), Zero (1), Real time (2)	Power down (0)	RW	Txt				US
04.040	Final Reactive Current Reference	±200.0 %		RO	Num	ND	NC	PT	FI

^{*} For size 9 and above the default is 150.0 %

RW	Read / Write	RO	Read only	Num	Number parameter	Bit	Bit parameter	Txt	Text string	Bin	Binary parameter	FI	Filtered
ND	No default value	NC	Not copied	PT	Protected parameter	RA	Rating dependent	US	User save	PS	Power-down save	DE	Destination

I		04.0	01	Current M	lagnitude						
I	RO)	Num				N	D	NC	PT	FI
	Û	0.000 to VM_DRIVE_CURRENT_UNIPOLAR									

Current Magnitude (04.001) is the instantaneous Regen drive output current scaled so that it represents the r.m.s. phase current in Amps under steady state conditions.

		04.0	002	Active Cu	rrent						
	RC) Num					N	D	NC	PT	FI
Û		VM_DRIVE_CURRENT A					$\hat{\Gamma}$				

Active Current (04.002) is the instantaneous level of active current scaled so that it represents the r.m.s. level of active current under steady state conditions. The Active Current (04.002) is positive when power is flowing from the supply and negative when power is flowing into the supply.

	04.0	04	Final Acti	ve Current	Reference	9				
RC)	Num				N	D	NC	PT	FI
Û	VM_TORQUE_CURRENT %				6	ightharpoons				

The Final Active Current Reference (04.004) is the active current reference from the DC bus voltage controller and power feed-forward system or user defined value with the current limits applied.

	04.0	005	Power Fro	om Supply	Current L	imit								
F	RW	W Num						RA US						
$\hat{\mathbf{v}}$	0.0 to VM_MOTOR1_CURRENT_LIMIT %					\uparrow		175.0 9	%					

The Power From Supply Current Limit (04.005) limits the active current when power is being taken from the supply. The Power To Supply Current Limit (04.006) limits the active current when power is being fed back into the supply. If the Symmetrical Current Limit (04.007) is below the Power From Supply Current Limit (04.005) then it is used instead of the Power From Supply Current Limit (04.005). If the Symmetrical Current Limit (04.007) is below the Power To Supply Current Limit (04.006) then it is used instead of the Power To Supply Current Limit (04.006). It should be noted that if the current limits become active it is no longer possible for the DC bus voltage to be controlled.

The maximum possible current limit (VM_MOTOR1_CURRENT_LIMIT [MAX]) varies between drive sizes with default parameters loaded. For some drive sizes the default value may be reduced below the value given by the parameter range limiting.

	Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
--	--------------------	--------------	------------------------	---------------	----------------------------	----------------------------	-----------------	--------------	------------	----------------	------------------	-------------	-------------------

١		04.0	06	Power To	Supply Cu	ırrent Limi	t				
	RV	RW Num							RA		US
	Û	0.0 to VM_MOTOR1_CURRENT_LIMIT %					ightharpoons		175.0 9	%	

See Power From Supply Current Limit (04.005).

	04.0	007	Symmetri	cal Curren	ıt Limit					
F	₹W	V Num						RA		US
Û	0.	0.0 to VM_MOTOR1_CURRENT_LIMIT %						175.0 9	%	

See Power From Supply Current Limit (04.005).

	04.0	800	Reactive Current Reference						
R۱									US
\$	VM_ REGEN_REACTIVE %			Ď	\Diamond		0.0 %		

Reactive Current Reference (04.008) can be used to define a level of reactive current other than the default value of zero, so that the Regen drive can be made to produce or consume reactive power. Reactive Current Reference (04.008) defines the level of reactive current as a percentage of the Rated Current (05.007). Positive reactive current produces a component of current flowing from the supply to the Regen that lags the respective phase voltage, and negative reactive current produces a component of current that leads the respective voltage.

The variable maximum applied to *Reactive Current Reference* (04.008) is used to ensure that the total current does not exceed the maximum allowed. If the current limits are at their maximum values then no reactive current is allowed and VM_REGEN_REACTIVE_REFERENCE[MIN] = 0 and VM_REGEN_REACTIVE_REFERENCE[MAX] = 0. As the *Final Current Limit* (04.018) is reduced then more reactive current is allowed.

	04.0	09	Active Cu	rrent Refe	rence					
RV	N	Num								US
$\hat{\mathbb{Q}}$	VM_USER_CURRENT %					\Diamond		0.0 %	ı	

If Active Current Reference Selector (04.010) = 0 then the active current reference is defined by the DC bus voltage controller and the power feed-forward system. If Active Current Reference Selector (04.010) = 1 then the user can define the active current reference. The polarity of Reactive Current Reference (04.008) is the same as Active Current (04.002), and so a positive value causes power to flow from the supply to the Regen drive, and a negative values causes power to flow from the Regen drive to the supply. It should be noted that the Regen drive can no longer control its own DC bus voltage, and so this must be controlled by some external system.

	04.0	10	Active Cu	rrent Refe	rence Sele	ctor				
RV	N Bit									US
Û	Off (0) or On (1)					\Diamond		Off (0)	

See Active Current Reference (04.009).

	04.0	04.013 Current Controller Kp Ga							
	RW	N Num							US
${\bf \hat{v}}$		0 to 30000				ightharpoons		90	

Current Controller Kp Gain (04.013) and Current Controller Ki Gain (04.014) are the proportional and integral gains of the current controllers. In many applications the default gains can be used, but under certain supply conditions it is necessary to reduce the Current Controller Kp Gain (04.013) to prevent instability.

Refer to section 8.3 Current loop gains on page 143.

		04.0	14	Current C	ontroller k	(i Gain				
	RV	N						US		
4	Û	0 to 30000					ightharpoons		2000	

See Current Controller Kp Gain (04.013).

Safety	Introduction	Product	System	Mechanical	Electrical	Getting	Optimization	Parameters	Technical	Component	Diagnostics	UL
information	IIIIIOddciioii	Information	design	Installation	Installation	started	Optimization	raiailleteis	data	sizing	Diagnostics	Information

	04.0	04.015 Inductor Thermal Time Cor				nt				
RV	W Num									US
Û	1.0 to 3000.0 s		$\hat{\Gamma}$		89.0 s	3				

A single time constant thermal model is provided that can be use to estimate the temperature of the Regen inductors connected between the Regen drive and the supply. The input to the model is the *Current Magnitude* (04.001). The *Inductor Protection Accumulator* (04.019) is given by the following equation.

T = 100.0% x [I / ($K_1 \times I_{Rated}$)]² x (1 - $e^{-t/\tau}$)

where:

T = Inductor Protection Accumulator (04.019)

I = Current Magnitude (04.001)

I_{Rated} = Rated Current (05.007)

τ = Inductor Thermal Time Constant (04.015)

If Rated Current (05.007) \leq Maximum Heavy Duty Rating (11.032) then $K_1 = 1.05$, otherwise $K_1 = 1.01$.

Inductor Protection Accumulator Reset

The initial value in the *Inductor Protection Accumulator* (04.019) at power-up is defined by *Inductor Protection Accumulator Power-up Value* (04.036) as given in the table below.

Inductor Protection Accumulator Power-up Value (04.036)	Inductor Protection Accumulator (04.019) at power-up
Power Down	The value is saved at power-down and is used as the initial value at power-up.
Zero	The value is set to zero.
Real Time	If a real-time clock is present and if <i>Date/Time Selector</i> (06.019) is set up to select the real-time clock then the value saved at power-down is modified to include the effect of the inductor thermal protection time constants over the time between power-down and power-up. This modified value is then used as the initial value at power-up. If no real time clock is present then and this option is selected then the value saved at power-down is used as the initial value.

The Inductor Protection Accumulator (04.019) is reset under the following conditions:

Inductor Thermal Time Constant (04.015) is set to 0.0. Note that this is not possible in the standard product as the minimum parameter value is 1.0. *Rated Current* (05.007) is modified.

Inductor Protection Accumulator Warning

If $[I/(K_1 \times I_{Rated})]^2 > 1.0$ then eventually the *Inductor Protection Accumulator* (04.019) will reach 100% causing the Regen drive to trip. If this is the case and *Inductor Protection Accumulator* (04.019) > 75.0% then [*Ind Overload*] alarm indication is given and *Inductor Overload Alarm* (10.017) is set to one.

	04.0	17	Reactive	Reactive Current						
R	O Num					N	D	NC	PT	FI
$\hat{\mathbb{T}}$	VM_DRIVE_CURRENT A			$\hat{\Gamma}$						

Reactive Current (04.017) is the instantaneous level of reactive current scaled so that it represents the r.m.s. level of reactive current under steady state conditions.

I		04.0	18	Final Curi	rinal Current Limit						
	RC	RO Num					N	D	NC	PT	
	Û	VM_TORQUE_CURRENT %		6	\Diamond						

Final Current Limit (04.018) is the current limit level that is applied to the active current.

	04.0	19	Inductor F	Protection	Accumula	tor				
RO	С	Num					D	NC	PT	PS
Û	0.0 to 100.0 %					\Diamond				

See Inductor Thermal Time Constant (04.015).

information design installation statled data sizing - information	Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
---	--------------------	--------------	------------------------	---------------	----------------------------	----------------------------	--------------------	--------------	------------	----------------	------------------	-------------	-------------------

	04.0	20	Percentag	je Load						
RO	RO Num					N	D	NC	PT	FI
Û	VM_USER_CURRENT %									

Percentage Load (04.020) gives the Active Current (04.002) as a percentage of the Rated Current (05.007). Positive values indicate power flow from the supply to the Regen drive and negative values indicate power flow from the Regen drive to the supply.

	04.0	21	Current F	eedback F	ilter Disab	le				
RV	RW Bit								US	
Û	Off (0) or On (1)					\uparrow		Off (0))	

If *Current Feedback Filter Disable* (04.021) = 0, a 4 ms filter is applied to the current feedback components measured by the drive to be used in *Active Current* (04.002) and *Reactive Current* (04.017). This filter removes ripple components associated with the PWM switching. If *Current Feedback Filter Disable* (04.021) = 1, the filter is disabled and the user parameters are based on the current components sampled every 250 µs.

I		04.0	24	User Curr	ent Maxim	um Scalin	g				
	R۷	RW Num							RA		US
	Û	0.0 to VM_TORQUE_CURRENT_UNIPOLAR							175.0 9	%	

User Current Maximum Scaling (04.024) defines the variable maximum/minimum VM_USER_CURRENT which is applied to Percentage Load (04.020) and Active Current Reference (04.009). This is useful when routing these parameters to an analog output as it allows the full scale output value to be defined by the user.

The maximum value (VM_TORQUE_CURRENT_UNIPOLAR [MAX]) varies between drive sizes with default parameters loaded. For some drive sizes the default value may be reduced below the value given by the parameter range limiting.

	04.0	36	Inductor F	Protection	Accumula	tor P	ower-	up value			
RV	RW Txt										US
\$	Power down (0), Zero (1), Real time (2)								Power dov	vn (0)	

See Inductor Thermal Time Constant (04.015).

	04.0)40	Final Rea	ctive Curre	ent Referer	псе				
R	RO Num					N	D	NC	PT	FI
Û	±200.0 %				ightharpoons					

Final Reactive Current Reference (04.040) gives the reactive current reference that is defined by the user plus any current that is injected by the island detection system.

Safety	Introduction	Product	System	Mechanical	Electrical	Getting	Optimization	Parameters	Technical	Component	Diagnostics	UL
information	Introduction	Information	design	Installation	Installation	started	Optimization	raiailleteis	data	sizing	Diagnostics	Information

9.5 Menu 5: Regen Status

Figure 9-3 Menu 5 Regen status flow diagram

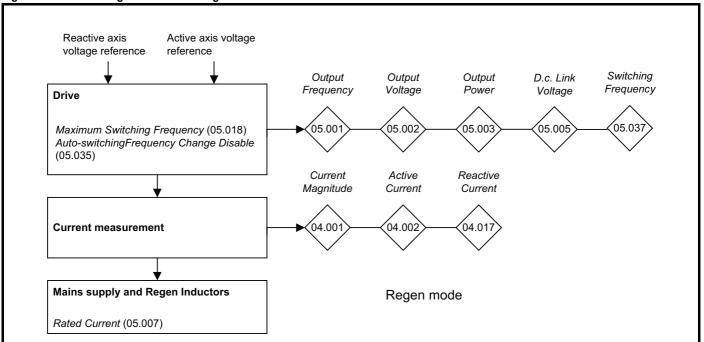


Table 9-7 Menu 5 Regen parameter descriptions

	Parameter	Range(�)	Default(⇔)			Тур	е		
05.001	Output Frequency	±200.0 Hz		RO	Num	ND	NC	PT	FI
05.002	Output Voltage	0 to VM_AC_VOLTAGE V		RO	Num	ND	NC	PT	FI
05.003	Output Power	VM_POWER kW		RO	Num	ND	NC	PT	FI
05.005	DC Bus Voltage	0 to VM_DC_VOLTAGE V		RO	Num	ND	NC	PT	FI
05.007	Rated Current	0.000 to VM_RATED_CURRENT A	Maximum Heavy Duty Rating (11.032)	RW	Num		RA		US
05.018	Maximum Switching Frequency	3 (1) kHz, 4 (2) kHz, 6 (3) kHz, 8 (4) kHz, 12 (5) kHz, 16 (6) kHz	3 (1) kHz	RW	Txt		RA		US
05.023	DC Bus Voltage High Range	0 to VM_HIGH_DC_VOLTAGE V		RO	Num	ND	NC	PT	FI
05.035	Auto-switching Frequency Change	Enabled (0), Disabled (1), No Ripple Detect (2)	Enabled (0)	RW	Txt				US
05.036	Auto-switching Frequency Step Size	1 to 2	2	RW	Num				US
05.037	Switching Frequency	3 (1) kHz, 4 (2) kHz, 6 (3) kHz, 8 (4) kHz, 12 (5) kHz, 16 (6) kHz		RO	Txt	ND	NC	PT	
05.038	Minimum Switching Frequency	0 to VM_MIN_SWITCHING_FREQUENCY kHz	3 (1) kHz	RW	Txt				US
05.039	Maximum Inverter Temperature Ripple	20 to 60 °C	60 °C	RW	Num				US

RW	Read / Write	RO	Read only	Num	Number parameter	Bit	Bit parameter	Txt	Text string	Bin	Binary parameter	FI	Filtered
ND	No default value	NC	Not copied	PT	Protected parameter	RA	Rating dependent	US	User save	PS	Power-down save	DE	Destination

	05.001 Output Frequency									
RO	RO Num		N	D	NC	PT	FI			
Û	±200.0 Hz					ightharpoons				

The Output Frequency (05.001) is a measure of the supply frequency. If the frequency shown is positive it indicates that the supply phase sequence is U-V-W. If it is negative it indicates that the supply phase sequence is W-V-U.

	05.0	02	Output Vo	oltage						
RO)	Num				N	D	NC	PT	FI
Û	0 to VM_AC_VOLTAGE V					\Diamond				

The Output Voltage (05.002) is the r.m.s. line to line voltage at the AC terminals of the drive.

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
--------------------	--------------	------------------------	---------------	----------------------------	-------------------------	--------------------	--------------	------------	----------------	------------------	-------------	-------------------

	05.0	003	Output Po	ower					
R	RO Num			N	D	NC	PT	FI	
Û	VM_POWER kW				\Diamond				

The Output Power (05.003) is the power flowing via the AC terminals of the drive. The power is derived as the dot product of the output voltage and current vectors. For Regen mode a positive value of power indicates power flowing from the supply to the Regen drive.

I		05.0	05	DC Bus V	oltage					
ı	RO	RO Num				N	D	NC	PT	FI
	Û	0 to VM_DC_VOLTAGE V				ightharpoons				

DC Bus Voltage (05.005) gives the voltage across the DC bus of the drive.

	05.0	07	Rated Cui	rrent						
R۱	RW Num							RA		US
\$	0.000 to VM_RATED_CURRENT A				NT A	\Rightarrow	Maximum	Heavy Duty	/ Rating (11	.032)

Rated Current (05.007) is used to define rated operating conditions for Regen inductor thermal protection. See *Inductor Thermal Time Constant* (04.015).

	05.0	18	Maximum	Switching	g Frequenc	y				
R۱	RW Txt					RA		US		
Û	3 (1) kHz, 4 (2) kHz, 6 (3) kHz, 8 (4) kHz, 12 (5) kHz, 16 (6) kHz				•	$\hat{\mathbf{T}}$		3 (1) kH	łz	

Maximum Switching Frequency (05.018) should be set to the required PWM switching frequency. The drive inverter will operate at this frequency unless the inverter temperature becomes too hot. Under these conditions the drive will reduce the switching frequency in an attempt to avoid tripping (see Auto-switching Frequency Change (05.035)). The actual switching frequency is shown in Switching Frequency (05.037). The switching frequency has a direct effect on the sample rate for the current controllers (see Current Controller Kp Gain (04.013)). All other control tasks are at a fixed rate.

		05.0	23	DC Bus V	oltage Hig	h Range					
	RC	RO Num					N	D	NC	PT	FI
1	Ì	0 to VM_HIGH_DC_VOLTAGE V				ΕV	ightharpoons				

D.c. Bus Voltage High Range (05.023) provides voltage feedback that has lower resolution and a higher range than D.c. Bus Voltage (05.005), and so it is possible to determine the DC bus voltage even if this exceeds the level of the over-voltage trip. It should be noted that due to tolerances, D.c. Bus Voltage High Range (05.023) may not correspond exactly with the level given by DC Bus Voltage (05.005). In a system with parallel power modules where the control pod is remote from any of the power modules, this parameter always shows zero.

		05.0	35	Auto-swit	ching Fred	quency Ch	ange				
	RW Txt										US
$\hat{\mathbb{O}}$	Enabled (0), Disabled (1), No Ripple Detect (2)					Detect (2)	\Rightarrow		Enabled	(0)	

The drive inverter can be damaged if the temperature is too high. The inverter can also be damaged or the lifetime of the power devices reduced, if the temperature ripple of the devices is too high. *Auto-switching Frequency Change* (05.035) defines the action taken if the drive inverter becomes too hot or the temperature ripple becomes too high.

Enabled:

If the inverter becomes too hot or the ripple temperature is higher than the level defined by *Maximum Inverter Temperature Ripple* (05.039) the switching frequency is reduced in an attempt to prevent tripping.

Disabled:

The switching frequency is not reduced, and so the drive will trip if the inverter is too hot or the temperature ripple is too high.

No Ripple Detect:

The switching frequency is reduced if the inverter temperature, but not the temperature ripple is too high. If the temperature ripple exceeds the level defined by *Maximum Inverter Temperature Ripple* (05.039) then the drive will trip.

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information

The switching frequency is changed in steps defined by *Auto-switching Frequency Step Size* (05.036). For example with a switching frequency of 16 kHz and a step size of two, the frequency will be reduced to 8 kHz, then 4 kHz etc. *Minimum Switching Frequency* (05.038) defines the minimum switching frequency that the system will attempt to use. If the switching frequency needs to switch to a lower level, then the drive will trip. If *Minimum Switching Frequency* is changed the new value will only become active when *Switching Frequency* is at or above the minimum value.

	05.0	36	Auto-swit	ching Fred	quency Ste	p Siz	е		
RV	V	Num							US
Û			1 to 2			ightharpoons		2	

See Auto-switching Frequency Change (05.035).

	05.0	37	Switching	Frequenc	у					
R						N	D	NC	PT	
Û	RO Txt 3 (1) kHz, 4 (2) kHz, 6 (3) kHz, 8 (4) kHz, 12 (5) kHz, 16 (6) kHz					\Diamond				

Shows the actual inverter switching frequency after the auto-change function.

I		05.0	38	Minimum	Switching	Frequenc	y				
	RW Txt		Txt								US
	Û	0 to VM_MIN_SWITCHING_FREQUENCY kH					\Diamond		3 (1) kH	łz	

See Auto-switching Frequency Change (05.035).

	05.0	39	Maximum	Inverter T	emperatur	e Rip	ple		
R۱	N	Num							US
\$	20 to 60 °C					ightharpoons		60 °C	

Maximum Inverter Temperature Ripple (05.039) defines the maximum inverter temperature ripple allowed before the switching frequency is reduced. See Auto-switching Frequency Change (05.035).

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
--------------------	--------------	------------------------	---------------	----------------------------	----------------------------	--------------------	--------------	------------	-------------------	------------------	-------------	-------------------

Menu 6: Sequencer and Clock 9.6

Figure 9-4 Menu 6 logic diagram

Safety	Introduction	Product	System	Mechanical	Electrical	Getting	Ontimization	Doromotoro	Technical	Component	Diagnostics	UL
information	Introduction	Information	design	Installation	Installation	started	Optimization	Parameters	data	sizing	Diagnostics	Information

Table 9-8 Menu 6 Regen parameter descriptions

	Parameter	Range(ᡎ)	Default(⇔)			Тур	е		
06.010	Enable Conditions	000000000000 to 111111111111		RO	Bin	ND	NC	PT	
06.011	Sequencer State Machine Inputs	000000 to 111111		RO	Bin	ND	NC	PT	
06.015	Drive Enable	Off (0) or On (1)	On (1)	RW	Bit				US
06.016	Date	00-00-00 to 31-12-99	00-00-00	RW	Date	ND	NC	PT	
06.017	Time	00:00:00 to 23:59:59	00:00:00	RW	Time	ND	NC	PT	
06.018	Day Of Week	Sunday (0), Monday (1), Tuesday (2), Wednesday (3), Thursday (4), Friday (5), Saturday (6)		RO	Txt	ND	NC	PT	
06.019	Date/Time Selector	Set (0), Powered (1), Running (2), Acc Powered (3), Local Keypad (4), Remote Keypad (5), Slot 1 (6), Slot 2 (7), Slot 3 (8), Slot 4 (9)	Powered (1)	RW	Txt				US
06.020	Date Format	Std (0) or US (1)	Std (0)	RW	Txt				US
06.021	Time Between Filter Changes	0 to 30000 Hours	0 Hours	RW	Num				US
06.022	Filter Change Required / Change Done	Off (0) or On (1)	Off (0)	RW	Bit	ND	NC		
06.023	Time Before Filter Change Due	0 to 30000 Hours		RO	Num	ND	NC	PT	PS
06.024	Reset Energy Meter	Off (0) or On (1)	Off (0)	RW	Bit				
06.025	Energy Meter: MWh	±999.9 MWh		RO	Num	ND	NC	PT	PS
06.026	Energy Meter: kWh	±99.99 kWh		RO	Num	ND	NC	PT	PS
06.027	Energy Cost Per kWh	0.0 to 600.0	0.0	RW	Num				US
06.028	Running Cost	±32000		RO	Num	ND	NC	PT	
06.029	Hardware Enable	Off (0) or On (1)		RO	Bit	ND	NC	PT	
06.041	Drive Event Flags	00 to 11	00	RW	Bin		NC		
06.042	Control Word	0000000000000000000 to 11111111111111111	00000000000000	RW	Bin		NC		
06.043	Control Word Enable	Off (0) or On (1)	Off (0)	RW	Bit				US
06.044	Active Supply	Off (0) or On (1)		RO	Bit	ND	NC	PT	
06.045	Cooling Fan control	-10 to 11	10	RW	Num				US
06.046	Cooling Fan Speed	0 to 10		RO	Num	ND	NC	PT	
06.060	Standby Mode Enable	Off (0) or On (1)	Off (0)	RW	Bit				US
06.061	Standby Mode Mask	0000000 to 1111111	0000000	RW	Bin				US
06.065	Standard Under Voltage Threshold	0 to VM_STD_UNDER_VOLTS V	200 V drive: 175 V 400 V drive: 330 V 575 V drive: 435 V 690 V drive: 435 V	RW	Num		RA		US
06.066	Low Under Voltage Threshold	24 to VM_LOW_UNDER_VOLTS V	200 V drive: 175 V 400 V drive: 330 V 575 V drive: 435 V 690 V drive: 435 V	RW	Num		RA		US
06.067	Low Under Voltage Threshold Select	Off (0) or On (1)	Off (0)	RW	Bit				US
06.071	Slow Rectifier Charge Rate Enable	Off (0) or On (1)	Off (0)	RW	Bit				US
06.072	User Supply Select	Off (0) or On (1)	Off (0)	RW	Bit				US
06.073	Braking IGBT Lower Threshold	0 to VM_DC_VOLTAGE_SET V	200 V drive: 390 V 400 V drive: 780 V 575 V drive: 930 V 690 V drive: 1120 V	RW	Num		RA		US
06.074	Braking IGBT Upper Threshold	0 to VM_DC_VOLTAGE_SET V	200 V drive: 390 V 400 V drive: 780 V 575 V drive: 930 V 690 V drive: 1120 V	RW	Num		RA		US
06.075	Low Voltage Braking IGBT Threshold	0 to VM_DC_VOLTAGE_SET V	0 V	RW	Num		RA		US
06.076	Low Voltage Braking IGBT Threshold Select	Off (0) or On (1)	Off (0)	RW	Bit				
06.084	Date And Time Offset	±24.00 Hours	0.00 Hours	RW	Num				US

R	W Read	/ Write	RO	Read only	Num	Number parameter	Bit	Bit parameter	Txt	Text string	Bin	Binary parameter	FI	Filtered
Ν	D No de	fault value	NC	Not copied	PT	Protected parameter	RA	Rating dependent	US	User save	PS	Power-down save	DE	Destination
I	P IP add	dress	Mac	Mac address	Date	Date parameter	Time	Time parameter	SMP	Slot,menu,parameter	Chr	Character parameter	Ver	Version number

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
--------------------	--------------	---------------------	---------------	----------------------------	----------------------------	--------------------	--------------	------------	----------------	------------------	-------------	-------------------

I		06.0	10	Enable Co	onditions						
	RC)	Bin				N	D	NC	PT	
	Û	000000000000000000 to 1111111111111					\uparrow				

The Final drive enable is a combination of the *Hardware Enable* (06.029), *Drive Enable* (06.015) and other conditions that can prevent the drive from being enabled. All of these conditions are shown as bits in *Enable Conditions* (06.010) as given in the table below.

Enable Conditions (06.010) bits	Enable condition
0	Hardware Enable (06.029)
1	Drive Enable (06.015)
2	Always 1 in Regen mode.
3	NA NA
4	Set to 1
5	Zero until the drive thermal model has obtained temperatures from all drive thermistors at least once.
6	Zero until all option modules that are present in the drive have indicated that they are ready to run or the system has timed out waiting for this.
7-10	Zero if an option module has forced the drive to be disabled if for example it is updating its user program. Bit 7 corresponds to slot 1, bit 8 to slot 2, etc.
11	Zero if the drive is in standby mode. See Standby Mode Enable (06.060)

	06.011 Sequencer State Machine In									
RO)	Bin				N	D	NC	PT	
Û			000000 to 1	11111		ightharpoons				

The bits in Sequencer State Machine Inputs (06.011) show the state of the inputs to the sequencer state machine as given in the table below.

Sequencer State Machine Inputs (06.011)	Signal	Indicates
0	Final drive enable	The drive inverter is allowed to be enabled
1	Not used	Always zero.
2	Under Voltage Active (10.016)	The under voltage condition has been detected.
3	Charge System Disabled / Contactor Closed (03.008)	Indicates when the external charge system contactor is closed.
4	Drive tripped	The drive is tripped.
5	Synchronized (03.009)	Regen system is synchronized to the supply.

	06.0	15	Drive Ena	ble						
RV	N	Bit								US
\$	Off (0) or On (1)					ightharpoons		On (1))	

Drive Enable (06.015) must be active for the drive to be enabled.

	06.0	16	Date							
RV	Ν	Date			N	D	NC	PT		
\$		00	-00-00 to 3	1-12-99	$\hat{\Box}$			00-00-0	00	

Date (06.016), Time (06.017) and Day Of Week (06.018) show the date and time as selected by Date/Time Selector (06.019). Date (06.016) stores the date in dd.mm.yy format regardless of the setting made in Date Format (06.020) however if the parameter is viewed using a keypad the date will be displayed in the format selected in Date Format (06.020). If a real time clock is selected from an option module then the days, months and years are from the real time clock and the day of the week is displayed in Day Of Week (06.018). Otherwise the days have a minimum value of 0 and roll over after 11, and Day Of Week (06.018) is always 0 (Sunday).

If when setting the date/time this parameter is being written via comms or from and applications module then the value should be written in standard dd/mm/yy format as described below.

The value of this parameter as seen over comms or to an applications module is as follows.

Value = $(day[1..31] \times 10000) + (month[1..12] \times 100) + year[0..99]$

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information	
--------------------	--------------	---------------------	---------------	----------------------------	----------------------------	--------------------	--------------	------------	----------------	------------------	-------------	-------------------	--

	06.0	17	Time							
RV	V	Time			N	D	NC	PT		
Û		00	0:00:00 to 2	3:59:59	ightharpoons			00:00:0	00	

See Date (06.016).

The value of this parameter as seen over comms or to an applications module is as follows.

Value = $(hour[0..23] \times 10000) + (minute[0..59] \times 100) + seconds[0..59]$

	06.0	18	Day Of W	eek					
RC)	Txt			N	D	NC	PT	
\$, ,), Monday ((3), Thurso Saturday	lay (4), Frid	 \Diamond				

See Date (06.016).

		06.0	19	Date/Time	Selector						
	RV	V	Txt								US
ĵ.	ţ	R	Acc Power	Powered (1 ered (3), Lo pad (5), Slo lot 3 (8), Sl	cal Keypad ot 1 (6), Slo	1 (4),	\updownarrow		Powered	(1)	

Date/Time Selector (06.019) is used to select the drive date and time as shown in the table below.

Date/Time Selector (06.019)	Date/Time Source
0: Set	Date and time parameters can be written by the user.
1: Power	Time since the drive was powered up.
2: Running	Accumulated drive running time since the drive was manufactured.
3: Acc Power	Accumulated powered-up time since the drive was manufactured.
4: Local Keypad	If a keypad fitted to the front of the drive includes a real-time clock then the date/time from this clock is displayed, otherwise the date/time is set to zero.
5: Remote Keypad	If a keypad connected to the user comms port of a drive with a 485 includes a real-time clock then the date/time from this clock is displayed, otherwise the date/time is set to zero.
6: Slot 1	As 4 above, but for option slot 1
7: Slot 2	As 4 above, but for option slot 2
8: Slot 3	As 4 above, but for option slot 3
9: Slot 4	As 4 above, but for option slot 4

When *Date/Time Selector* (06.019) = 0 the *Date* (06.016) and *Time* (06.017) can be written by the user and the values in these parameters are transferred to the real time clocks in the keypad or any option modules that support this feature that are fitted to the drive. When *Date/Time Selector* (06.019) is changed to any other value, the real time clocks are allowed to run normally again. When *Date/Time Selector* (06.019) is changed from any value to 0 the date and time from a real time clock, if present, is automatically loaded into *Date* (06.016) and *Time* (06.017), so that this date and time is used as the initial value for editing. If more than one real time clock is present the date/time from the keypad is used, if present, and if not then the date/time from the lowest number slot with a real time clock is used.

Date (06.016) and Time (06.017) are used by the timers in Menu 09 and for time stamping trips. These features will continue to use the originally selected clock even if Date/Time Selector (06.019) is changed until a drive reset is initiated. If Date/Time Selector (06.019) has been changed and a reset is initiated Timer 1 Repeat Function (09.039) and Timer 2 Repeat Function (09.049) are set to zero to disable the timers, and the trip dates and times (10.041 to 10.060) are reset to zero.

		06.0	20	Date Forn	nat					
	RV	V	Txt							US
\hat{v}		Std (0), US (1)			\Diamond		Std (0)		

Date Format (06.020) selects the display style for Date (06.016), Timer 1 Start Date (09.035), Timer 1 Stop Date (09.037), Timer 2 Start Date (09.045), Timer 2 Stop Date (09.047), and for the trip time stamping date parameters (10.041, 10.043, 10.045, 10.047, 10.049, 10.051, 10.053, 10.055, 10.057 and 10.059) when displayed on a keypad connected to the drive. The format selection made in this parameter does not affect the value of these parameters if they are read using comms or by an applications program.

If *Date Format* (06.020) is 0 then standard format is used and the date is displayed on the keypad as dd.mm.yy and if *Date Format* (06.020) is 1 then US format is used and the date is displayed on the keypad as mm.dd.yy.

information In	Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
--	--------------------	--------------	---------------------	---------------	----------------------------	----------------------------	-----------------	--------------	------------	-------------------	------------------	-------------	-------------------

	06.0)21	Time Betv	ween Filter	Changes					
RV	N	Num								US
Û	0 to 30000 Hours					ightharpoons		0 Hour	S	

Time Between Filter Changes (06.021) should be set to a non-zero value to enable the filter change timer system. Each time Filter Change Required / Change Done (06.022) is changed by the user from 1 to 0 the value of Time Between Filter Changes (06.021) is copied to Time Before Filter Change Due (06.023). For each hour while Drive Active (10.002) = 1 the Time Before Filter Change Due (06.023) is reduced by 1 until it reaches zero. When Time Before Filter Change Due (06.023) changes from 1 to 0 Filter Change Required / Change Done (06.022) is set to 1 to indicate that a filter change is required. The filter should be changed and the system reset again by resetting Filter Change Required / Change Done (06.022) to 0.

	06.0	22	Filter Cha	nge Requi	ired / Chan	ge D	one				
RV	N	Bit				N	D	NC			
\$	Off (0) or On (1)					\Rightarrow			Off (0))	

See Time Between Filter Changes (06.021).

	06.023 Time Before Filter Change D					9				
R	RO Num						D	NC	PT	PS
Û	0 to 30000 Hours		\uparrow							

See Time Between Filter Changes (06.021).

	06.0	24	Reset Energy Meter									
RV	N	Bit										
\$	Off (0) or On (1)				\Diamond			Off (0)			

Energy Meter: MWh (06.025) and Energy Meter: kWh (06.026) accumulate the energy transferred through the drive. If Reset Energy Meter (06.024) = 1 then Energy Meter: MWh (06.025) and Energy Meter: kWh (06.026) are held at zero. If Reset Energy Meter (06.024) = 0 then the energy meter is enabled and will accumulate the energy flow. If the maximum or minimum of Energy Meter: MWh (06.025) is reached the parameter does not rollover and is instead clamped at the maximum or minimum value. For Regen mode, a positive energy flow indicates that power is flowing from the supply to the AC drive terminals.

	06.0	25	Energy M	eter: MWh					
RO	0		N	D	NC	PT	PS		
Û	±999.9 MWh				\Rightarrow				

See Reset Energy Meter (06.024).

	06.0	26	Energy M	eter: kWh					_	_
RC	RO Num					N	D	NC	PT	PS
Û			±99.99 k	Wh		\Rightarrow				

See Reset Energy Meter (06.024).

		06.0	27	Energy Co	ost Per kW	/h				
	R۷	RW Num								US
Û		0.0 to		0.0 to 60	0.0		$\hat{\Gamma}$		0.0	

Running Cost (06.028) is derived from the Output Power (05.003) and the Energy Cost Per kWh (06.027) in cost per hour. The sign of Running Cost (06.028) is the same as the sign of Output Power (05.003).

	06.0	28	Running (Cost						
RO	RO Num				N	D	NC	PT		
Û	±32000			\Rightarrow						

See Energy Cost Per kWh (06.027).

Safety		Product	System	Mechanical	Electrical	Getting		_	Technical	Component		UL
information	Introduction	Information	design	Installation	Installation	started	Optimization	Parameters	data	sizing	Diagnostics	Information

	06.029 Hardware Enable									
RO	C	Bit				N	D	NC	PT	
Û	Off (0) or On (1)			\Diamond						

Hardware Enable (06.029) normally shows the hardware enable state based on the state of the safe torque off system. However, drive I/O can be routed to Hardware Enable (06.029) to reduce the disable time.

	06.0)41	Drive Event Flags								
R۱	W Bin						NC				
Û	00 to 11			\Diamond			00				

Drive Event Flags (06.041) indicates that certain actions have occurred within the drive as described below.

Bit	Corresponding event
0	Defaults loaded
1	Drive mode changed

Bit 0: Defaults loaded

The drive sets bit 0 when defaults have been loaded and the associated parameter save has been completed. The drive does not reset this flag except at power-up.

Bit 1: Drive mode changed

The drive sets bit 1 when the drive mode has changed and the associated parameter save has been completed. The drive does not reset this flag except at power-up.

06.042			Control W	Control Word									
RV	RW Bin				NC								
Û	000000000000000000 to 111111111111111111			$\hat{\Gamma}$		C	000000000	000000					

If Control Word Enable (06.043) = 0 then Control Word (06.042) has no effect. If Control Word Enable (06.043) = 1 the bits in Control Word (06.042) are used instead of their corresponding parameters or to initiate drive functions as shown in the table below.

Bit	Corresponding parameter or function
0	Drive Enable (06.015)
1	Not used
2	Not used
3	Not used
4	Not used
5	Not used
6	Not used
7	Auto/manual
8	Analog/Preset reference
9	Not used
10	Not used
11	Not used
12	Trip drive
13	Reset drive
14	Watchdog

Bits 0-7 and bit 9: Sequencer control

When Auto/manual bit (bit7) = 1 then bit 0 of the *Control Word* (06.042) becomes active. The equivalent parameters are not modified by these bits, but become inactive when the equivalent bits in the *Control Word* (06.042) are active. When the bits are active they replace the functions of the equivalent parameters.

Bit 8: Analog/1preset reference

The value of this bit has no effect on the drive.

Bit 10 and bit 11: Not used

The values of these bits have no effect on the drive.

Bit 12: Trip drive

If bit 12 = 1 then a Control Word trip is repeatedly initiated. The trip cannot be cleared until bit 12 = 0.

Bit 13: Reset drive

If bit 13 is changed from 0 to 1 a drive reset is initiated. Bit 13 does not modify Drive Reset (10.033).

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
--------------------	--------------	---------------------	---------------	----------------------------	----------------------------	-----------------	--------------	------------	----------------	------------------	-------------	-------------------

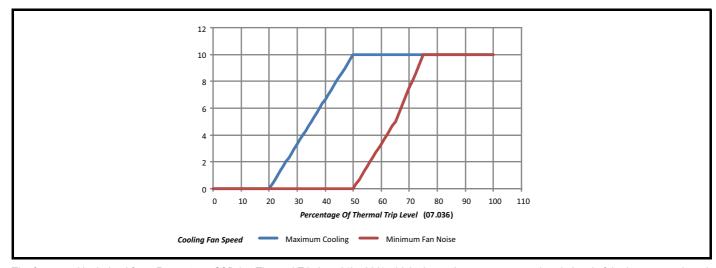
Bit 14: Watchdog

A watchdog system can be enabled or serviced each time bit 14 is changed from 0 to 1. Once bit 14 has been changed from 0 to 1 to enable the watchdog, this must be repeated every 1 s or else a *Watchdog* trip will be initiated. The watchdog is disabled when the trip occurs and must be reenabled if required when the trip is reset.

	06.043 Control Word Enable									
RV	N	Bit								US
$\hat{\mathbb{Q}}$	Off (0) or On (1)					\Rightarrow		Off (0)	

See Control Word (06.042).

	06.0)44	Active Su	pply					
F	RO	Bit			N	D	NC	PT	
Û			Off (0) or C	On (1)	\uparrow				


In Regen mode Active Supply (06.044) is always zero.

I		06.045 Cooling Fan Control									
I	RV	V	Num						US		
I	Û	-10 to 11			\uparrow		10				

Cooling Fan Control (06.045) can be used to select various fan control functions as shown in the table below. The actual control speed of the fan(s) is given in Cooling Fan Speed (06.046). There are 10 control speeds for the fan(s) in the drive, however the actual hardware control is more coarse than this, and so there may not be an actual change of fan speed as Cooling Fan Speed (06.046) changes from one value to the next. The default value for Cooling Fan Control (06.045) is 10, which gives maximum cooling and does not limit the fan speed below its maximum. It should be noted that if the speed is limited, by setting a lower value, then the drive may trip prematurely under load.

Cooling Fan Control (06.045)	Function Selected
-10 to -1	Minimum fan noise function with fan speed limited to the value of <i>Cooling Fan Control</i> (06.045).
0	Fan does not run.
1 to 10	Maximum cooling with fan speed limited to the modulus of <i>Cooling Fan Control</i> (06.045).
11	Fan runs continuously at full speed.

The two possible control characteristics are shown in the diagram below.

The fan speed is derived from *Percentage Of Drive Thermal Trip Level* (07.036) which shows the percentage to the trip level of the hottest monitored point in the drive. The "Maximum Cooling" characteristic brings the fan(s) on at a relatively low temperature to give maximum cooling. The "Minimum Fan Noise" characteristic does not switch on the fan(s) until the drive temperature has risen significantly, and the characteristic has a lower gradient. Therefore with lighter continuous loads the fan noise is kept to a minimum. This characteristic also prevents the fan(s) from coming on when the drive is disabled and operating in a high ambient. With both characteristics a filter is applied to *Percentage Of Drive Thermal Trip Level* (07.036) to avoid the fans switching on and off during short high transient loads. The "Minimum Fan Noise" characteristic also includes a hysteresis band of 15 % that is applied to the percentage of drive thermal trip level at the input to the control algorithm to prevent the feedback from changing the speed back again. This reduces the chance of the fan repetitively changing speed under constant load conditions.

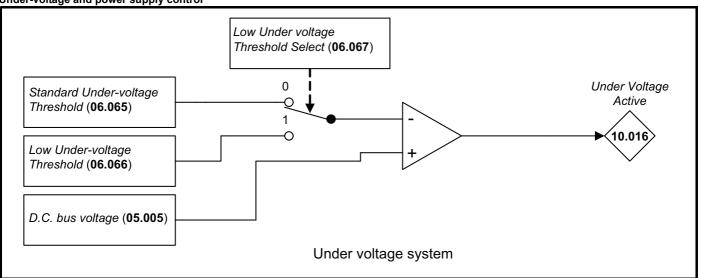
	Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
--	--------------------	--------------	------------------------	---------------	----------------------------	----------------------------	-----------------	--------------	------------	-------------------	------------------	-------------	-------------------

	06.0	46	Cooling Fan Speed									
RO	C	Num				ND		NC	PT			
Û	0 to 10				\Diamond							

See Cooling Fan Control (06.045).

	06.0	60	Standby Mode Enable									
R۱	W Bit										US	
Û	Off (0) or On (1)								Off (0)		

If Standby Mode Enable (06.060) = 1 then the drive will go into the standby power state whenever Drive Active (10.002) = 0 with a delay of 30 s. In this state the LED on the front of the drive flashes 0.5 s on and 5 s off, the drive cannot be enabled and the following actions are taken as defined by the Standby Mode Mask (06.061). Actions are enabled by setting the appropriate bit to 1. Once standby mode has become active it will remain active, even if an attempt is made subsequently to enable the drive, until Standby Mode Enable (06.060) is set to 0.


Standby Mode Mask (06.061) bits	Action
0	NA
1	Turn off the power supply to a keypad fitted to the drive.
2	Turn off the drive 24 V output
3	Request that the option module in option slot 1 to go into the standby power mode
4	Request that the option module in option slot 2 to go into the standby power mode
5	Request that the option module in option slot 3 to go into the standby power mode
6	Request that the option module in option slot 4 to go into the standby power mode

	06.0	61	Standby Mode Mask									
RV	W Bin								US			
Û	0000000 to 1111111					\Diamond			000000	00		

See Standby Mode Enable (06.060).

		06.065	Standard	Standard Under Voltage Threshold								
	RW	Num							RA		US	
Û		0 to VM	/_STD_UND	ER_VOLT	SV	\Diamond		4 5	200 V drive: 200 V drive: 375 V drive: 390 V drive:	330 V 435 V		

Under-voltage and power supply control

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
--------------------	--------------	---------------------	---------------	----------------------------	----------------------------	--------------------	--------------	------------	----------------	------------------	-------------	-------------------

Under-voltage system

The under-voltage system controls the state of *Under Voltage Active* (10.016) which is then used by the sequencer state machine. Each under voltage threshold detection system includes hysteresis of 5 % of the actual threshold level therefore:

DC Bus Voltage (05.005)	Under voltage detection
Vdc	Active
Threshold ≤ Vdc	No change
Vdc ≥ Threshold x 1.05*	Not active

^{*} Hysteresis is 5 % subject to a minimum of 5 V

When *Under Voltage Active* (10.016) = 1 the sequencer state machine will change to the UNDER_VOLTAGE state and when the UNDER_VOLTAGE state is active it is not possible to enable the drive inverter.

If the low under-voltage threshold is used the internal drive power supplies are normally powered from the 24 V supply input (i.e. Digital I/O 13). *User Supply Select* (06.072) should be set to one to select this supply and its monitoring system.

If Low Under Voltage Threshold Select (06.067) = 0 then the under voltage threshold is defined by Standard Under Voltage Threshold (06.065). If Low Under Voltage Threshold Select (06.067) = 1 then the under voltage threshold is defined by Low Under Voltage Threshold (06.066).

İ	06.066 Low Under Voltage Threshold										
	RV	V	Num						RA		US
	\$		24 to VM_	_LOW_UNI	DER_VOL1	rs v	$\hat{\mathbb{T}}$	4 5	200 V drive: 200 V drive: 375 V drive: 390 V drive:	330 V 435 V	

See Standard Under Voltage Threshold (06.065).

	06.067 Low Under Voltage Thresho						ct			
RV	٧	Bit								US
Û	Off (0) or On (1)					$\hat{\mathbb{T}}$		Off (0))	

See Standard Under Voltage Threshold (06.065). Also see User Supply Select (06.072) for details of when and how drive parameters can be saved, and when a User 24V trip can occur.

	06.0	71	Slow Rec	Slow Rectifier Charge Rate Enable									
R۱	W Bit										US		
$\hat{\mathbf{v}}$	Off (0) or On (1)				\Rightarrow			Off (0)				

For frame size 07 drives and larger, which use a DC bus charge system based on a half controlled thyristor input bridge, the rate at which the DC bus is charged can be reduced by setting *Slow Rectifier Charge Rate Enable* (06.071) to one. This will reduce the charging current which may be required if significant additional capacitance is added to the DC bus to prevent rupturing of input fuses.

	06.072 User Supply Select										
RV	N	Bit									US
Û	Off (0) or On (1)					\Rightarrow			Off (0)	

The power for the drive control system is either taken from the user 24 V power supply or the main supply (a combination of the AC mains supply and DC bus). If *Low Under Voltage Threshold Select* (06.067) = 0 and User Supply Select (06.072) = 0 then the supply used is determined as follows for drive sizes 5 and below. (For drive sizes 6 and above a diode OR system is used to select the required power supply, and so this is done automatically in hardware.)

When the drive first powers up it tries to use the main supply or the user 24 V supply in turn until the drive starts up, beginning with the main supply.

If the main supply is active and the DC bus voltage (*D.c. Bus Voltage* (05.005)) falls to a level where it is no longer possible to communicate with the power stage then the drive attempts to switch over to the user 24 V supply. If the user 24 V supply is not present then the drive will power down, otherwise it will continue to run off the user 24 V supply. The level at which the power stage powers down depends on whether the user 24 V supply is present or not. However this maybe below half the minimum for *Standard Under Voltage Threshold* (06.065) depending on the drive power supply loading from option modules, I/O etc.

If the user 24 V supply is being used and the DC bus voltage (*D.c. Bus Voltage* (05.005)) rises above 95 % of the minimum for *Standard Under Voltage Threshold* (06.065) then the drive attempts to switch to the main supply.

The following should be noted:

Parameters can be saved by setting *Parameter mm.000* (mm.000) to 1000 (not in under-voltage state), or to 1 or 1001 (in any state) and initiating a drive reset. Power-down save parameters are saved when the under-voltage state becomes active.

If the drive is powered from the user 24 V supply and then the main supply is activated but is not above 95 % of the minimum for *Standard Under Voltage Threshold* (06.065) then the drive will continue to be powered from the user 24 V supply. If the user 24 V supply is subsequently removed the drive will power down, but then if the main supply is high enough will power up again on the main supply.

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
			_									

Although the drive can be maintained in the standby condition by power derived from its DC bus at a level well below the minimum for *Standard Under Voltage Threshold* (06.065) the level down to which it will operate depends on the loading applied by option modules and I/O. For reliable operation it is advisable that the DC bus voltage is above 90 % of the minimum for *Standard Under Voltage Threshold* (06.065) when the 24 V supply is not present.

It is possible to initiate saving power-down save parameters by forcing the drive into the under-voltage state by changing *Low Under Voltage Threshold Select* (06.067) from 1 to 0 when the DC bus voltage is below 90 % of the minimum of *Standard Under Voltage Threshold* (06.065). This is not advisable because failure of the 24 V supply or the main supply at this point could result in corruption of the drive parameters saved in non-volatile memory.

If Low Under Voltage Threshold Select (06.067) = 1 or User Supply Select (06.072) = 1 then the 24 V user supply is always selected. If the user 24 V supply is not present then a User 24V trip is initiated. The following should be noted:

The drive will still power-up on the main supply even if the user 24 V supply is not present because the drive tries each supply in turn to power up, however the drive will remain in the tripped state until the user 24 V supply is activated.

Parameters can only be saved by setting *Parameter mm.000* (mm.000) to 1001 and initiating a drive reset. Power-down save parameters are not saved when the under-voltage state becomes active.

I		06.0	73	Braking I	GBT Lowe	r Threshol	d				
	RV	٧	Num						RA		US
	\$		0 to VM	I_DC_VOL	TAGE_SET	·V	\Diamond	4 5	200 V drive: 100 V drive: 575 V drive: 90 V drive:	780 V 930 V	

Braking IGBT Lower Threshold (06.073) defines the lowest level of *D.c. Bus Voltage* (05.005) where the braking IGBT will become active and *Braking IGBT Upper Threshold* (06.074) defines the level of *D.c. Bus Voltage* (05.005) where the braking IGBT will be on continuously. When the braking IGBT is turned on it will remain on for at least 1 ms. The braking IGBT on-time is defined by the thresholds and the DC bus voltage as given in the table below where L = *Braking IGBT Lower Threshold* (06.073) and U = *Braking IGBT Upper Threshold* (06.074).

DC bus voltage level	On-time
D.c. Bus Voltage (05.005)	0 %
L ≤ D.c. Bus Voltage (05.005)	[(D.c. Bus Voltage (05.005) - L) / (U - L)] x 100 %
<i>D.c. Bus Voltage</i> (05.005) ≥ U	100 %

As the *D.c. Bus Voltage* (05.005) rises above the lower threshold the braking IGBT is active with an on/off ratio of 1/100. As the voltage rises further, the on/off ratio increases until at the upper threshold the braking IGBT is on continuously. The upper and lower voltage threshold can be set up so that braking resistors in drives with parallel connected DC buses will share the braking load.

If Braking IGBT Lower Threshold $(06.073) \ge$ Braking IGBT Upper Threshold (06.074) then the braking IGBT is off when D.c. Bus Voltage $(05.005) \le$ Braking IGBT Upper Threshold (06.074) and on if D.c. Bus Voltage $(05.005) \ge$ Braking IGBT Upper Threshold (06.074). This method of control is the same as that used in Unidrive SP and the default values for the braking thresholds are equal to the braking thresholds in Unidrive SP.

Unless sharing between braking resistors is required the braking thresholds do not normally need to be adjusted. Care should be taken when reducing the thresholds because if either threshold is below the maximum value of the peak rectified supply voltage the braking resistor could take power from the supply.

The braking IGBT can become active under the following conditions:

- 1. The Regen drive is unable to regenerate power from the motoring drive on the DC bus due to a mains loss condition.
- 2. The Regen drive is in current limit and is unable to capture the peak power returned from the motoring drive.

The list below gives conditions that will disable the braking IGBT:

- 1. Braking IGBT Upper Threshold (06.074) = 0, or Low Voltage Braking IGBT Threshold Select (06.076) = 1 and Low Voltage Braking IGBT Threshold (06.075) = 0
- 2. The drive is in the under-voltage state.
- 3. A priority 1, 2 or 3 trip is active (see Trip 0 (10.020)).
- 4. One of the following trips is active or would be active if another trip is not already active: OI Brake, PSU, Th Brake Res or OHt Inverter.
- 5. Percentage Of Drive Thermal Trip Level (07.036) = 100 %. This is an indication that some part of the drive is too hot and is used to indicate if an internally fitted braking resistor is too hot.
- 6. Brake R Too Hot is active or the system has been set up to disable the braking IGBT based on the braking resistor temperature and the resistor is too hot (i.e. bit 2 of Action On Trip Detection (10.037) is set).

		06.0	74	Braking I	GBT Uppe						
ı	RV	V	Num						RA		US
	\$		0 to VM	I_DC_VOL ⁻	TAGE_SET	·V	\Diamond	4 5	200 V drive: 200 V drive: 375 V drive: 90 V drive:	780 V 930 V	

See Braking IGBT Lower Threshold (06.073).

Safety information Introduction Product System Mechanical Installation Started	Optimization Parameters Technical data Component sizing Diagnostics Ir	UL Information
--	--	-------------------

		06.0	75	Low Voltage Braking IGBT Threshold									
	RV	W Num								RA		US	
Û	ţ	0 to VM_DC_VOLTAGE_SET V					\uparrow			0 V			

If Low Voltage Braking IGBT Threshold Select (06.076) = 0 the normal thresholds are used. If Low Voltage Braking IGBT Threshold Select (06.076) = 1 then Low Voltage Braking IGBT Threshold (06.075) is used, so that the braking IGBT is on with a minimum on time of 1 ms is the DC bus voltage is above this level, or off if the DC bus voltage is below this level.

	06.0	76	Low Volta	ge Brakin	g IGBT Thr	esho	ld Se	lect			
RV	N	Bit									
Û	Off (0) or On (1)					\Rightarrow			Off (0)	

See Low Voltage Braking IGBT Threshold (06.075).

	06.0	84	Date And	Time Offs	et					
RV	Ν	Num								US
Û	±24.00 Hours					$\hat{\Box}$		0.00 Ho	urs	

Date And Time Offset (06.084) is an offset, specified in hours, that can be applied to the Time (06.017). If the offset applied causes the time to roll-over midnight then the Date (06.016) and Day Of Week (06.018) are also modified. The offset is only applied when the clock source is a clock derived from a keypad or option module, i.e. Date/Time Selector (06.019) > 3. The offset can be used for time zone offsets or daylight saving time etc. It should be noted that when the date and time is derived from an option module this may be in the form of UTC (Coordinated Universal Time) with an additional offset also provided by the option module. The data and time is derived by adding the additional offset and the time from the option module and then adding Date And Time Offset (06.084).

Safety	Introduction	Product	System	Mechanical	Electrical	Getting	Ontimization	Daramatara	Technical	Component	Diagnostics	UL
information	Introduction	Information	design	Installation	Installation	started	Optimization	Parameters	data	sizing	Diagnostics	Information

9.7 Menu 7: Analog I/O

Figure 9-5 Menu 7 logic diagram

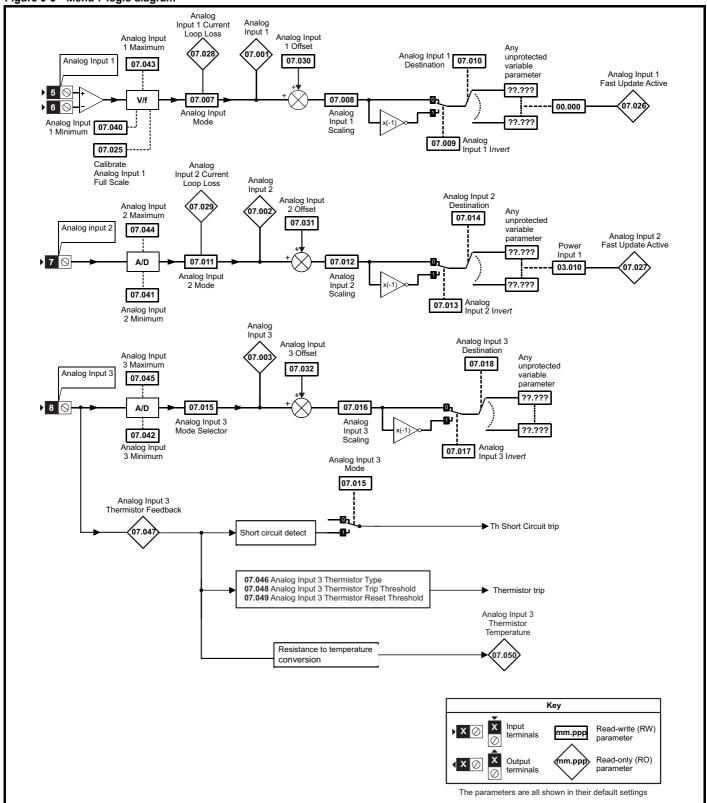
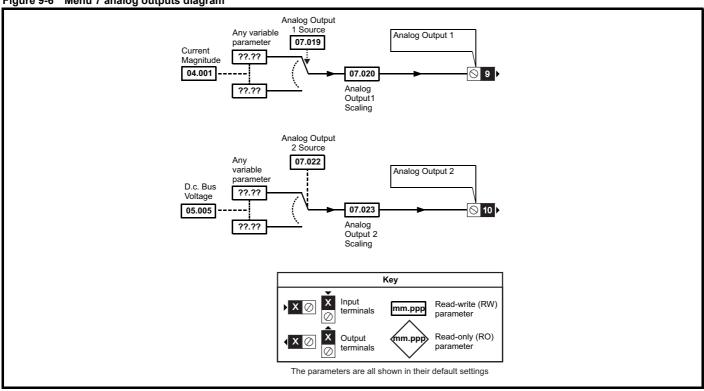
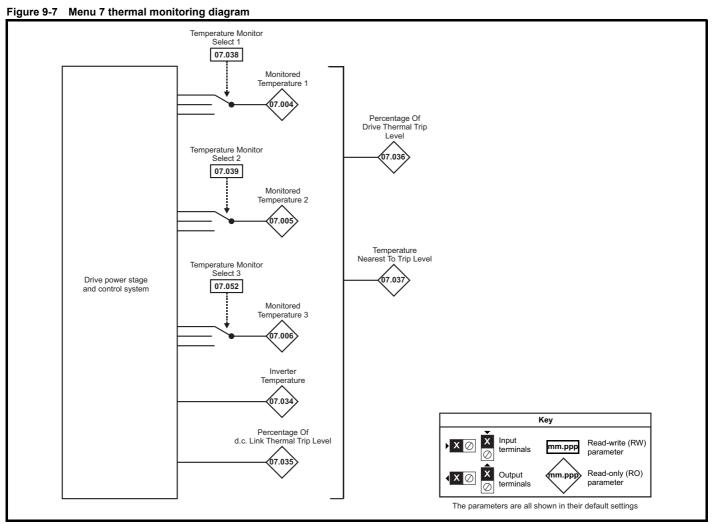




Figure 9-6 Menu 7 analog outputs diagram

Safety	Introduction	Product	System	Mechanical	Electrical	Getting	Optimization	Parameters	Technical	Component	Diagnostics	UL Information
information		Information	design	Installation	Installation	started	- p		data	sizing	g	Information

The drive has three analog inputs (Al1 to Al3) and two analog outputs (AO1 and AO2). Each input has a similar parameter structure and each output has a similar parameter structure.

Terminal	Input	Input modes	Resolution
5/6	Al1	-4 to 6	12 bits (11 bits plus sign)
7	Al2	-4 to 6	12 bits (11 bits plus sign)
8	Al3	6 to 9	12 bits (11 bits plus sign)

Terminal	Output	Output modes	Resolution
9	AO1	Bipolar single-ended voltage only	10 bit
10	AO2	Bipolar single-ended voltage only	10 bit

Update rate

The normal sample rate for the analog inputs is 4 ms, however this is increased to 250 us for analog inputs 1 and 2 under the following conditions:

- 1. The maximum and the minimum for the input are at their default values of 100.00 % and -100.00 % respectively.
- 2. The input is set to voltage mode.
- 3. One of the destinations selected is Power Input 1 (03.010), Power Input 2 (03.013) or Power Input 3 (03.014).

NOTE

Analog Input 1 Fast Update Active (07.026) and Analog Input 2 Fast Update Active (07.027) indicate if fast updating is active for each input.

Analog outputs are updated every 250 µs; although the output will only change at the update rate defined by the source parameter for the input.

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
--------------------	--------------	------------------------	---------------	----------------------------	----------------------------	--------------------	--------------	------------	----------------	------------------	-------------	-------------------

Table 9-9 Menu 7 Regen parameter descriptions

	Parameter	Range(む)	Default(⇔)			Тур	е		
07.001	Analog Input 1	±100.00 %		RO	Num	ND	NC	PT	FI
07.002	Analog Input 2	±100.00 %		RO	Num	ND	NC	PT	F
07.003	Analog Input 3	±100.00 %		RO	Num	ND	NC	PT	F
07.004	Monitored Temperature 1	±250 °C		RO	Num	ND	NC	PT	
07.005	Monitored Temperature 2	±250 °C		RO	Num	ND	NC	PT	
07.006	Monitored Temperature 3	±250 °C		RO	Num	ND	NC	PT	1
07.007	Analog Input 1 Mode	4-20 mA Low (-4), 20-4 mA Low (-3), 4-20 mA Hold (-2), 20-4 mA Hold (-1), 0-20 mA (0), 20-0 mA (1), 4-20 mA Trip (2), 20-4 mA Trip (3), 4-20 mA (4), 20-4 mA (5), Volt (6)	Volt (6)	RW	Txt				US
07.008	Analog Input 1 Scaling	0.000 to 10.000	1.000	RW	Num				US
07.009	Analog Input 1 Invert	Off (0) or On (1)	Off (0)	RW	Bit				US
07.010	Analog Input 1 Destination	0.000 to 59.999	0.000	RW	Num	DE		PT	US
07.011	Analog Input 2 Mode	4-20 mA Low (-4), 20-4 mA Low (-3), 4-20 mA Hold (-2), 20-4 mA Hold (-1), 0-20 mA (0), 20-0 mA (1), 4-20 mA Trip (2), 20-4 mA Trip (3), 4-20 mA (4), 20-4 mA (5), Volt (6)	Volt (6)	RW	Txt				US
07.012	Analog Input 2 Scaling	0.000 to 10.000	1.000	RW	Num				US
07.013	Analog Input 2 Invert	Off (0) or On (1)	Off (0)	RW	Bit				US
07.014	Analog Input 2 Destination	0.000 to 59.999	3.010	RW	Num	DE		PT	US
07.015	Analog Input 3 Mode	Volt (6), Therm Short Cct (7), Thermistor (8), Therm No Trip (9)	Volt (6)	RW	Txt				US
07.016	Analog Input 3 Scaling	0.000 to 10.000	1.000	RW	Num				US
07.017	Analog Input 3 Invert	Off (0) or On (1)	Off (0)	RW	Bit				US
07.018	Analog Input 3 Destination	0.000 to 59.999	0.000	RW	Num	DE		PT	US
07.019	Analog Output 1 Source	0.000 to 59.999	4.001	RW	Num			PT	US
07.020	Analog Output 1 Scaling	0.000 to 10.000	1.000	RW	Num				US
07.022	Analog Output 2 Source	0.000 to 59.999	5.005	RW	Num			PT	US
07.023	Analog Output 2 Scaling	0.000 to 10.000	1.000	RW	Num				US
07.025	Calibrate Analog Input 1 Full Scale	Off (0) or On (1)	Off (0)	RW	Bit		NC		+
07.026	Analog Input 1 Fast Update Active	Off (0) or On (1)	Oii (0)	RO	Bit	ND	NC	PT	-
07.027	Analog Input 2 Fast Update Active	Off (0) or On (1)		RO	Bit	ND	NC	PT	-
07.028	Analog Input 1 Current Loop Loss	Oii (0) 0i Oii (1)		RO	Bit	ND	NC	PT	-
07.029	Analog Input 2 Current Loop Loss	Off (0) or On (1)		RO	Bit	ND	NC	PT	-
07.023	Analog Input 1 Offset	±100.00 %	0.00 %	RW	Num	ND	NO		US
07.030	Analog Input 2 Offset	±100.00 %	0.00 %	RW	Num				US
07.031	Analog Input 3 Offset	±100.00 %	0.00 %	RW					US
	0 1		0.00 %		Num	ND	NO	БТ	US
07.033	Power Output	±100.0 %		RO	Num	ND	NC	PT	-
07.034	Inverter Temperature	±250 °C		RO	Num	ND	NC	PT	<u> </u>
07.035	Percentage Of DC bus Thermal Trip Level	0 to 100 %		RO	Num	ND	NC	PT	
07.036	Percentage Of Drive Thermal Trip Level	0 to 100 %		RO	Num	ND	NC	PT	
07.037	Temperature Nearest To Trip Level	0 to 20999		RO	Num	ND	NC	PT	
07.038	Temperature Monitor Select 1	0 to 1999	1001	RW	Num				US
07.039	Temperature Monitor Select 2	0 to 1999	1002	RW	Num				US
07.040	Analog Input 1 Minimum	±100.00 %	-100.00 %	RW	Num				US
07.041	Analog Input 2 Minimum	±100.00 %	-100.00 %	RW	Num				US
07.042	Analog Input 3 Minimum	±100.00 %	-100.00 %	RW	Num				US
07.043	Analog Input 1 Maximum	±100.00 %	100.00 %	RW	Num				US
07.044	Analog Input 2 Maximum	±100.00 %	100.00 %	RW	Num				US
07.045	Analog Input 3 Maximum	±100.00 %	100.00 %	RW	Num				US
07.046	Analog Input 3 Thermistor Type	DIN44082 (0), KTY84 (1), PT100 (4W) (2), PT1000 (4W) (3), PT2000 (4W) (4), 2.0 mA (4W) (5), PT100 (2W) (6), PT1000 (2W) (7), PT2000 (2W) (8), 2.0 mA (2W) (9)	DIN44082 (0)	RW	Txt				US
07.047	Analog Input 3 Thermistor Feedback	0 to 5000 Ω		RO	Num	ND	NC	PT	
07.048	Analog Input 3 Thermistor Trip Threshold	0 to 5000 Ω	3300 Ω	RW	Num				US
07.049	Analog Input 3 Thermistor Reset Threshold	0 to 5000 Ω	1800 Ω	RW	Num				US
07.050	Analog Input 3 Thermistor Temperature	-50 to 300 °C		RO	Num	ND	NC	PT	
07.051	Analog Input 1 Full Scale	0 to 65535		RO	Num	ND	NC	PT	PS
07.052	Temperature Monitor Select 3	0 to 1999	1	RW	Num				US

RW	Read / Write	RO	Read only	Num	Number parameter	Bit	Bit parameter	Txt	Text string	Bin	Binary parameter	FI	Filtered
ND	No default value	NC	Not copied	PT	Protected parameter	RA	Rating dependent	US	User save	PS	Power-down save	DE	Destination

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
--------------------	--------------	------------------------	---------------	----------------------------	----------------------------	--------------------	--------------	------------	-------------------	------------------	-------------	-------------------

	07.001 Analog Input 1									
RO	C	Num				N	D	NC	PT	FI
Û			±100.00	%		ightharpoons				

Each analog input has a resolution of 11 bits plus sign. The inputs can operate in different modes (defined by *Analog Input 1 Mode* (07.007) for analog input 1). These modes include voltage, current and thermistor modes.

Internal I/O Identifier (11.068)	Analog Input 1	Analog Input 2	Analog Input 3
0	Bipolar voltage, current & thermistor input	Bipolar voltage or current	Bipolar voltage or thermistor input

The "Input Level" is defined for the different modes in the table below.

Mode	Input level
Voltage	(Input Voltage / 10 V) x 100.00 %
0-20mA	(Input Current / 20 mA) x 100.00 %
20-0mA	((20 mA - Input Current) / 20 mA) x 100.00 %
4-20mA	((Input Current - 4 mA) / 16 mA) x 100.00 %
20-4mA	((20 mA - Input Current) / 16 mA) x 100.00 %
Thermistor	(Input resistance / 10 K Ohm) x 100 %

For thermistor modes it should be noted that *Analog Input 1 Minimum* (07.040) and *Analog Input 3 Minimum* (07.042) have no effect and that the input resistance is limited between 0 and 5K Ohms.

	07.0	002	Analog In	put 2						
R	O Num					N	D	NC	PT	FI
Û	±100.00 %				$\hat{\Box}$					

See Analog Input 1 (07.001).

	07.0	03	Analog In	put 3						
RO	O Num					N	D	NC	PT	FI
Û	±100.00 %					\Diamond				

See Analog Input 1 (07.001).

	07.004 Monitored Temperature 1									
RO)	Num				N	D	NC	PT	
Û		±250 °C								

Thermal monitoring is provided within the drive to protect the power stage and the control system from over temperature.

Monitored Temperature 1 (07.004), Monitored Temperature 2 (07.005) and Monitored Temperature 3 (07.006) give an indication of the temperature of three selected monitoring points within the drive power system or control system. The required monitoring points can be selected using Temperature Monitor Select 1 (07.038), Temperature Monitor Select 2 (07.039) and Temperature Monitor Select 3 (07.052) respectively. The default values give two monitoring points in the power system in Monitored Temperature 1 (07.004) and Monitored Temperature 2 (07.005), and control board temperature 1 in Monitored Temperature 3 (07.006).

	07.005 Monitored Temperature 2									
RO)	Num				N	D	NC	PT	
Û	±250 °C					ightharpoons				

See Monitored Temperature 1 (07.004) for details.

	07.0	06	Monitored	l Tempera	ture 3					
R	0) Num					D	NC	PT	
Û	±250 °C					\Rightarrow				

See Monitored Temperature 1 (07.004) for details.

Safety	Introduction	Product	System	Mechanical	Electrical	Getting	Ontimization	Baramatara	Technical	Component	Diagnostics	UL
information	Introduction	Information	design	Installation	Installation	started	Optimization	rarameters	data	sizing	Diagnostics	Information

ĺ		07.0	07	е							
	RV	V	Txt								US
	\$	0-2	4-20 mA H 20 mA (0),	ow (-4), 20 lold (-2), 20 20-0 mA (1 (3), 4-20 m Volt (6	-4 mA Holo), 4-20 mA A (4), 20-4	d (-1), Trip (2),	ightharpoons		Volt (6	;)	

The table below gives all the possible input modes for analog inputs 1 and 2.

Mode	Function
4-20mA Low	4-20mA low value on current loss (1)
20-4mA Low	20-4mA low value on current loss (1)
4-20mA Hold	4-20mA hold at level before loss on current loss (2)
20-4mA Hold	20-4mA hold at level before loss on current loss (2)
0-20mA	0-20mA
20-0mA	20-4mA
4-20mA Trip	4-20mA trip on current loss (1), (3)
20-4mA Trip	20-4mA trip on current loss (1), (3)
4-20mA	4-20mA no action on loss (1)
20-4mA	20-4mA no action on loss (1)
Volt	Voltage

- (1) Analog input level is 0.00 % if the current is below 3 mA.
- (2) Analog input level remains at the value it had in the previous sample before the current fell below 3 mA.
- (3) An Input 1 Loss trip is initiated if the current falls below 3 mA.

	07.0	80	Analog In	put 1 Scal	ing				
RV	N	Num							US
Û		0.000 to 10.000						1.000	

Analog Input 1 (07.001) is modified by Analog Input 1 Scaling (07.008), Analog Input 1 Offset (07.030) and Analog Input 1 Invert (07.009) before it is routed to its destination as follows:

A_{1O} = Analog Input 1 (07.001) + Analog Input 1 Offset (07.030)

 A_{1O} is the value after the offset has been applied and is limited between -100.00 % and 100.00 %

 $A_{1S} = A_{1O} \times Analog Input 1 Scaling (07.008)$

 A_{1S} is the value after the scaling and the offset have been applied and is limited between -100.00 % and 100.00 %

If Analog Input 1 Invert (07.009) = 0 then $A_{1I} = A_{1S}$ otherwise $A_{1I} = -A_{1S}$

A₁₁ is the value after the invert, scaling and offset have been applied and is the final value that is routed to the destination defined by *Analog Input 1 Destination* (07.010).

	07.0	09	Analog In	put 1 Inve	rt					
R۱	V Bit									US
Û	Off (0) or On (1)					\Rightarrow		Off (0)	

See Analog Input 1 Scaling (07.008).

	07.0	10	Analog In	put 1 Dest	ination				
RV	W DE							PT	US
Û	0.000 to 59.999					$\hat{\Box}$		0.000	

Defines the output parameter for analog input 1.

	07.0)11	Analog In	put 2 Mod	е					
R۱	Ν	Txt								US
\$	0-	4-20 mA L 4-20 mA H 20 mA (0), : -4 mA Trip	20-0 mA (1	-4 mA Hold), 4-20 mA A (4), 20-4	d (-1), Trip (2),	ightharpoons		Volt (6	·)	

See Analog Input 1 Mode (07.007).

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information

		07.0	12	Analog In	put 2 Scal	ing					
I	RV	RW Num									US
	Û	0.000 to 10.000				$\hat{\Box}$		1.000	1		

The scaling, offset and invert functions for analog input 2 are defined in the same way as for analog input 1. See Analog Input 1 Scaling (07.008).

	07.0	13	Analog In	put 2 Inve	rt					
RV	RW Bit									US
Û	Off (0) or On (1)					ightharpoons		Off (0)	

The scaling, offset and invert functions for analog input 2 are defined in the same way as for analog input 1. See Analog Input 1 Scaling (07.008).

	07.0)14	Analog In	put 2 Dest	ination				
RV	W DE							PT	US
Û	0.000 to 59.999					\Rightarrow		3.010	

Defines the output parameter for analog input 2.

		07.0	15	Analog In	put 3 Mod	е					
	RV	٧	Txt								US
Û	Volt (6), Therm Short Cct (7), Thermistor (8), Therm No Trip (9)				nistor (8),	\Rightarrow		Volt (6	i)		

The table below gives all the possible input modes for analog input 3.

Mode	Function
Voltage	Voltage
Therm Short Cct	Temperature measurement input with short circuit detection
Thermistor	Temperature measurement without short circuit detection
Therm No Trip	Temperature measurement input with no trips

	07.0	16	Analog In	put 3 Scal	ing				
F	RW	Num							US
Û	0.000 to 10.000					\Diamond		1.000	

The scaling, offset and invert functions for analog input 3 are defined in the same way as for analog input 1. See Analog Input 1 Scaling (07.008).

	07.0	17	Analog In	put 3 Inve	rt					
RV	W Bit									US
Û	Off (0) or On (1)					ightharpoons		Off (0)	

The scaling, offset and invert functions for analog input 3 are defined in the same way as for analog input 1. See Analog Input 1 Scaling (07.008).

	07.0	07.018 Analog Input 3 Destination								
RV	RW DE							PT		US
Û	0.000 to 59.999					\Rightarrow		0.000)	

Defines the output parameter for analog input 3.

	07.0	19	Analog O	utput 1 So	urce				
RV	N	Num						PT	US
Û	0.000 to 59.999					\Diamond		4.001	

Analog Output 1 Source (07.019) defines the source parameter for analog output 1. The value of the sour ce parameter is scaled with Analog Output 1 Scaling (07.020) and if the scaling is greater than 1.000 the value is clamped between -100 % and +100% or between 0 % and 100 % depending on whether the output is bipolar or unipolar. The resulting value is then used to control the output. It should be noted that the normal rules for parameter routing do not apply, but the scaling always makes -100 % to +100 % correspond to the range from minus source parameter maximum to plus source parameter maximum, and 0 % corresponds to the source parameter value of zero. This means for example that a parameter with a minimum of 1 and a maximum of 10 will produce an output that changes from 10 % to 100 % as the parameter is change from minimum to maximum.

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
--------------------	--------------	---------------------	---------------	----------------------------	----------------------------	--------------------	--------------	------------	----------------	------------------	-------------	-------------------

Analog output 1 provides bipolar voltage output (-10 V to + 10 V).

	07.0	20	Analog O	utput 1 Sc	aling				
RV	W Num								US
Û	0.000 to 10.000					ightharpoons		1.000	

See Analog Output 1 Source (07.019).

	07.0	22	Analog O	utput 2 So	urce				
RV	Ν	Num						PT	US
Û	0.000 to 59.999					\Rightarrow		5.005	

Analog Output 2 Source (07.022) defines the source parameter for analog output 1. The value of the source parameter is scaled with Analog Output 2 Scaling (07.023) and if the scaling is greater than 1.000 the value is clamped between -100 % and +100 % or between 0 % and 100 % depending on whether the output is bipolar or unipolar. The resulting value is then used to control the output.

Analog output 2 provides bipolar voltage output (-10 V to + 10 V).

	07.0	23	Analog O	utput 2 Sc	aling				
RV	W Num								US
Û	0.000 to 10.0		0.000		ightharpoons		1.000		

See Analog Output 2 Source (07.022).

	07.0	25	Calibrate	Analog In _l	out 1 Full S	cale				
RV	W Bit						NC			
Û	Off (0) or On (1)					ightharpoons		Off (0))	

For analog input 1, and in voltage mode only, the full scale value used to determine the input level can be changed from 10 V by calibrating the input. The calibration process is triggered by setting Calibrate Analog Input 1 Full Scale (07.025) to one. Calibrate Analog Input 1 Full Scale (07.025) is cleared automatically when the calibration process is complete. After calibration the actions are as follows:

Input voltage during calibration	Result
V < 1.5 V	The calibration result is ignored and the full scale is set to 10 V. Analog Input 1 Full Scale (07.051) is set to zero.
1.5 V < V < 2.5 V	The calibration result is ignored and the full scale or Analog Input 1 Full Scale (07.051) are not affected.
V > 2.5 V	The calibration result is used to set full scale and the value is also stored in <i>Analog Input 1 Full Scale</i> (07.051).

It should be noted that Analog Input 1 Full Scale (07.051) is a power-down save parameter, and so the result is automatically retained after power-down.

	07.0	26	Analog In	put 1 Fast	Update Ad	ctive				
R	RO Bit					N	D	NC	PT	
\$	Off (0) or On (1)			宁						

Analog Input 1 Fast Update Active (07.026) is one if the destination for analog input 1 is being updated at the fast rate of 250 µs.

	07.02	7	Analog In	put 2 Fast	Update Ad	tive				
R	RO Bit						D	NC	PT	
Û	Off (0) or On (1)					\Rightarrow				

Analog Input 2 Fast Update Active (07.027) is one if the destination for analog input 2 is being updated at the fast rate of 250 µs.

	07.0	28	Analog In	put 1 Curr	ent Loop L	.oss				
RO	RO Bit					N	D	NC	PT	
Û	Off (0) or On (1)				ightharpoons					

If Analog Input 1 Mode (07.007) is set to any of the 4-20mA or 20-4mA modes and the current falls below 3 mA then Analog Input 1 Current Loop Loss (07.028) is set to one. If the current is more than 3 mA or any other mode is selected then Analog Input 1 Current Loop Loss (07.028) is set to zero.

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information

	07.0	29	Analog In	put 2 Curr	ent Loop L	.oss				
RO	C	Bit				N	D	NC	PT	
Û	Off (0) or On (1)					\Diamond				

See Analog Input 1 Current Loop Loss (07.028).

	07.0	30	Analog In	put 1 Offs	et					
RV	RW Num									US
Û	±100.00 %		\Rightarrow		0.00 %	6				

See Analog Input 1 Scaling (07.008).

	07.0	31	Analog In	put 2 Offs	et					
RV	RW Num									US
Û	±100.00 %			介		0.00 %	6			

The scaling, offset and invert functions for analog input 2 are defined in the same way as for analog input 1. See Analog Input 1 Scaling (07.008).

	07.0	32	Analog In	put 3 Offs	et					
RV	RW Num						US			
Û	±100.00 %				\Diamond		0.00 %	6		

The scaling, offset and invert functions for analog input 3 are defined in the same way as for analog input 1. See Analog Input 1 Scaling (07.008).

07.033			Power Ou	tput						
RO)	Num				N	D	NC	PT	
Û	±100.0 %		介							

This is an instantaneous power output with fast update rate that is primarily intended to be used as a power feed-forward for applications with a Regen system front end. The full scale (100.0 %) value is equal to a power of 3 x (VM_DC_VOLTAGE[MAX] / $2\sqrt{2}$) x Full Scale Current Kc (11.061). This is compatible with the power output provided in Unidrive SP and is directly compatible with Power Input 1 (03.010) (and the other power feed-forward parameters) in Regen mode. The scaling is intended to cover the maximum range of likely power in the drive. For example with a 400 V, 7.5 kW drive the full scale DC bus voltage is 831 V and Kc=38.222 A, and so the full scale value of this parameter is 3 x (831 / $2\sqrt{2}$) x 38.222 = 33.689 kW. For Regen mode a positive value of power indicates power flowing from the supply to the Regen drive.

		07.0	34	Inverter T	emperatur	е					
	RO Num				N	D	NC	PT			
$\hat{\mathbf{t}}$		±250 °C		\Diamond							

Inverter Temperature (07.034) shows the estimated junction temperature of the hottest power device within the drive inverter. If this temperature exceeds the switch down threshold defined for the power stage the switching frequency is reduced provided this feature has not been disabled (see *Auto-switching Frequency Change* (05.035)).

	07.0	35	Percentage Of DC Bus Thermal Trip Level								
RO	RO Num				N	D	NC	PT			
\$	0 to 100 %				$\hat{\mathbb{T}}$						

Percentage Of DC Bus Thermal Trip Level (07.035) gives the percentage of the maximum allowed temperature as estimated by the thermal model of the DC bus components.

	07.0	36	Percentag	Percentage Of Drive Thermal Trip Level								
R	RO Num					N	D	NC	PT			
\$	0 to 100 %				ightharpoons							

Percentage Of Drive Thermal Trip Level (07.036) gives the percentage of the thermal trip level of the temperature monitoring point or thermal model in the drive that is highest. This includes all thermal monitoring points (not just those selected by Monitored Temperature 1 (07.004), Monitored Temperature 2 (07.005) and Monitored Temperature 3 (07.006)), Inverter Temperature (07.034) and Percentage Of DC Bus Thermal Trip Level (07.035)

Percentage Of DC Bus Thermal Trip Level (07.035) is used directly to give Percentage Of Drive Thermal Trip Level (07.036), but for all other monitored values which are temperatures this is given by Percentage of thermal trip level = (Temperature - 40 °C) / (Trip temperature - 400 °C) x 100 %

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
--------------------	--------------	---------------------	---------------	----------------------------	----------------------------	--------------------	--------------	------------	-------------------	------------------	-------------	-------------------

The location of the measurement or the thermal model that is related to this temperature is given in Temperature Nearest To Trip Level (07.037). If Percentage Of Drive Thermal Trip Level (07.036) exceeds 90 %, Drive Over-temperature Alarm (10.018) is set to one. If Percentage Of Drive Thermal Trip Level (07.036) reaches 100 %, one of the trips given in the table below is initiated. The trip can be reset when the percentage of thermal trip level fall below 95 %.

Temperature	Trip
Inverter Temperature (07.034)	OHt Inverter
Power system temperature	OHt Power
Percentage Of DC Bus Thermal Trip Level (07.035)	OHt dc bus
Control system temperature	OHt Control

	07.0	37	Temperature Nearest To Trip Level								
F	RO Num		N	D	NC	PT					
Û	0 to 20999				\Rightarrow						

Temperature Nearest To Trip Level (07.037) shows the thermistor location or the model that corresponds to the value shown in Percentage Of Drive Thermal Trip Level (07.036) in the form xxyzz as shown in the table below.

		<u> </u>	
Source	ХХ	У	zz
Control system	00	0	01: Control board thermistor 1
Control system	00	0	02: Control board thermistor 2
Control system	00	0	03: I/O board thermistor
Control system	00	1	00: Inverter thermal model
Control system	00	2	00: DC bus thermal model
Control system	00	3	00: Braking IGBT thermal model
Power system	01	0	zz: Thermistor location defined by zz in the power system
Power system	01	Rectifier number	zz: Thermistor location defined by zz in the rectifier

	07.0	38	Temperat	ure Monito	or Select 1				
RV	RW Num							US	
Û	0 to 1999			ightharpoons		1001			

Temperature Monitor Select 1 (07.038) selects the temperature to be monitored in Monitored Temperature 1 (07.004) using the format given for Temperature Nearest To Trip Level (07.037). If the monitoring point selected does not exist then the monitored temperature is always zero. The table below shows the monitoring points that can be selected.

Source	ХХ	у	ZZ
Control system	00	0	01: Control board thermistor 1
Control system	00	0	02: Control board thermistor 2
Control system	00	0	03: I/O board thermistor
Control system	00	1	00: Inverter thermal model
Control system	00	3	00: Braking IGBT thermal model
Power system	01	0	zz: Thermistor location defined by zz in the power system
Power system	01	Rectifier number	zz: Thermistor location defined by zz in the rectifier

For a multi-module power system the power system measurement that can be selected is shown in the table below. It should be noted that the specific power module cannot be selected and that the highest temperature from each of the power modules is given.

Source	XX	У	ZZ
Power system	01	0	01: U phase power device thermistor
Power system	01	0	02: V phase power device thermistor
Power system	01	0	03: W phase power device thermistor
Power system	01	0	04: General rectifier thermistors
Power system	01	0	05: General power system thermistor

	07.0	39	Temperat	ure Monito	or Select 2				
R۱	Ν	Num							US
Û	0 to 1999					ightharpoons		1002	

See Temperature Monitor Select 1 (07.038).

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
--------------------	--------------	---------------------	---------------	----------------------------	----------------------------	--------------------	--------------	------------	----------------	------------------	-------------	-------------------

	07.0	40	Analog In	put 1 Mini	mum					
RV	N	/ Num								US
\$	±100.00 %					ightharpoons		-100.00	%	

See Analog Input 1 (07.001).

I		07.0)41	put 2 Mini	mum						
	RV	V Num									US
	Û	±100.00 %					介		-100.00	%	

See Analog Input 1 (07.001).

	07.0)42	mum							
RV	V Num									US
Û	±100.00 %					\uparrow		-100.00	%	

See Analog Input 1 (07.001).

	07.0	143	Analog In	put 1 Max	imum					
R۱	V Num									US
Û	±100.00 %					介		100.00	%	

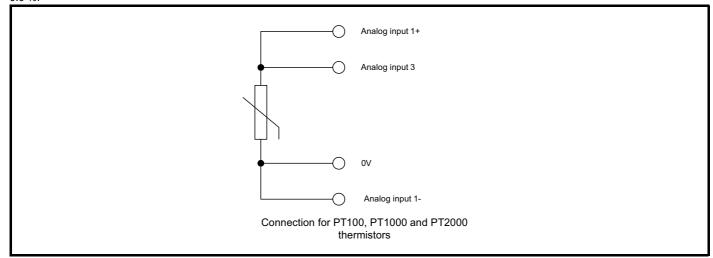
See Analog Input 1 (07.001).

	07.0)44	imum							
RV	N	V Num								US
Û	±100.00 %					\Diamond		100.00	%	

See Analog Input 1 (07.001).

	07.0	145	Analog In	put 3 Max	imum					
RV	V	/ Num								US
Û	±100.00 %					ightharpoons		100.00	%	

See Analog Input 1 (07.001).


	07.0	46	Analog In	put 3 Thermistor 1	уре				
F	RW	Txt							US
	D	PT1000 (2.0 mA (PT1000 (4W) (3), PT (4W) (5), PT), PT100 (4W) (2), '2000 (4W) (4), (100 (2W) (6), (2000 (2W) (8), (9)	\Diamond		DIN44082	2 (0)	

Analog Input 3 Thermistor Type (07.046) defines the operation of the temperature feedback interface for analog input 3 when Analog Input 3 Mode (07.015) is set up for a temperature feedback mode. When a temperature feedback mode is selected a 2 mA current source is connected to analog input 3 to supply the temperature feedback device that is connected to the input.

Analog Input 3 Thermistor Type (07.046)	Compatible devices
0: DIN44082	Three thermistors in series as specified in DIN44082 standard
1: KTY84	KTY84 PTC thermistor
2: PT100 (4W)	PT100 PTC thermistor with 4 wire connection
3: PT1000 (4W)	PT1000 PTC thermistor with 4 wire connection
4:PT2000 (4W)	PT2000 PTC thermistor with 4 wire connection
5: 2.0 mA (4W)	Any device. Full scale equivalent to a resistance of 5 k Ohms with 4 wire connection
6: PT100 (2W)	PT100 PTC thermistor with 2 wire connection
7: PT1000 (2W)	PT1000 PTC thermistor with 2 wire connection
8: PT2000 (2W)	PT2000 PTC thermistor with 2 wire connection
9: 2.0 mA (2W)	Any device. Full scale equivalent to a resistance of 5 k Ω with 2 wire connection

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
--------------------	--------------	------------------------	---------------	----------------------------	----------------------------	--------------------	--------------	------------	----------------	------------------	-------------	-------------------

DIN44082 and KTY84 devices should always be connected directly to analog input 3. The other devices can be connected directly to analog input 3 if the 2 wire connection option is selected. Alternatively these devices can be used with a 4 wire connection to remove the effect of voltage drops due to the 2 mA supply current as shown below. If a 4 wire connection is selected analog input 1 is disabled and *Analog Input 1* (07.001) always reads as 0.0 %.

	07.0	47	Analog In	put 3 Ther	mistor Fee	dbac	k			
RO	0	Num Num					D	NC	PT	
\mathfrak{J}	0 to 5000 Ω					\Box				

Analog Input 3 Thermistor Feedback (07.047) shows the measured resistance.

	07.0	148	Analog In	put 3 Ther	mistor Trip	Thre	eshol	d			
RV	N	Num									US
\$			0 to 5000	Ω		\Diamond			3300 0	Ω	

Over-temperature detection becomes active for input 3 if Analog Input 3 Thermistor Feedback (07.047) > Analog Input 3 Thermistor Trip Threshold (07.048). Over-temperature becomes inactive for input 3 if Analog Input 3 Thermistor Feedback (07.047) < Analog Input 3 Thermistor Reset Threshold (07.049). If Analog Input 3 Mode (07.015) is 7 or 8 (i.e. tripping is enabled) a Thermistor.003 trip is initiated. The default values for Analog Input 3 Thermistor Trip Threshold (07.048) and Analog Input 3 Thermistor Reset Threshold (07.049) are the levels specified in the DIN 44082 standard.

	07.0	49	Analog In	put 3 Ther	mistor Res	set Th	resh	old			
RV	N	Num									US
Û	0 to 5000 Ω								1800 (Ω	

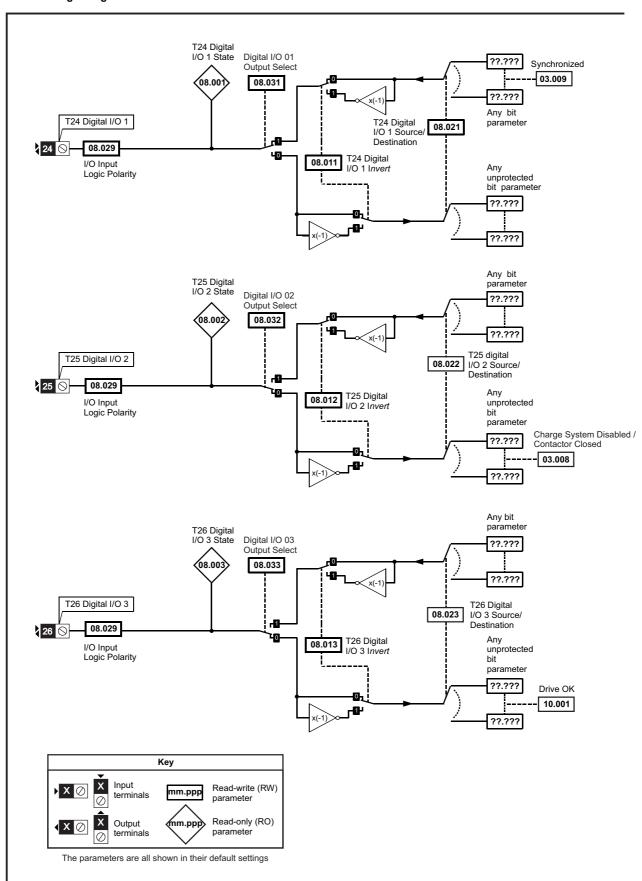
See Analog Input 3 Thermistor Trip Threshold (07.048).

	07.08	50	Analog In	put 3 Ther	mistor Ten	npera	ture			
R	С	Num				N	D	NC	PT	
Û			-50 to 300) °C		$\hat{\Box}$				

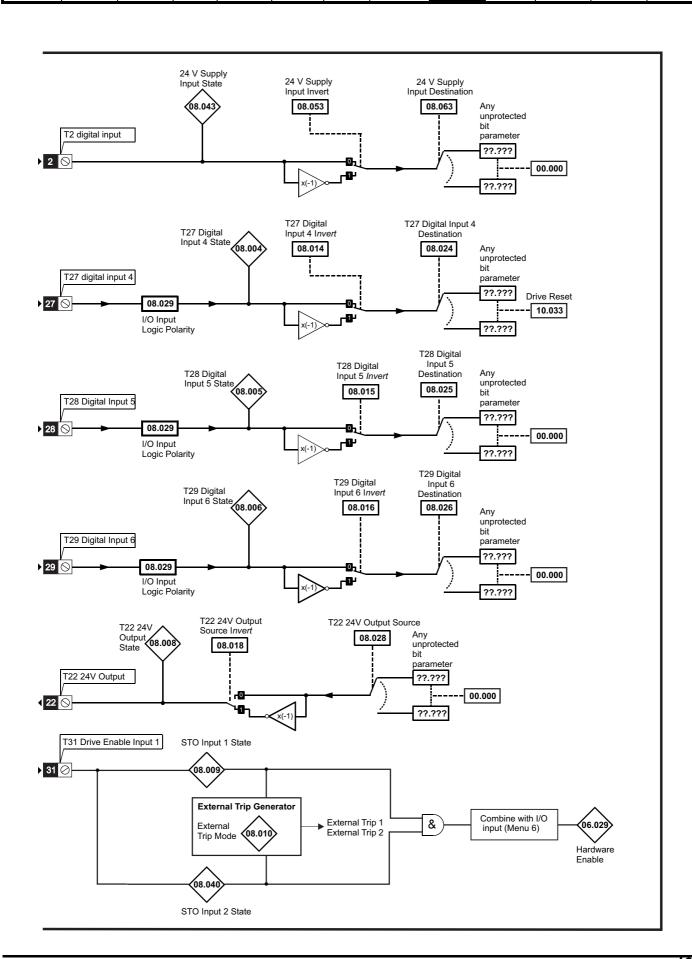
If a KTY84, PT100, PT1000 or PT2000 type device is selected for temperature feedback then *Analog Input 3 Thermistor Temperature* (07.050) shows the temperature of the device based on the resistance to temperature characteristic specified for this device. Otherwise *Analog Input 3 Thermistor Temperature* (07.050) = 0.0.

	07.0	51	Analog In	put 1 Full	Scale					
R	0	Num				N	D	NC	PT	PS
$\hat{\mathbf{t}}$			0 to 655	35		ightharpoons				

See Calibrate Analog Input 1 Full Scale (07.025).


	07.0	152	Temperat	ure Monito	or Select 3				
RV	N	Num							US
Û			0 to 199	99		ightharpoons		1	

See Temperature Monitor Select 1 (07.038).


Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information	
--------------------	--------------	------------------------	---------------	----------------------------	----------------------------	--------------------	--------------	------------	----------------	------------------	-------------	-------------------	--

9.8 Menu 8: Digital I/O

Figure 9-8 Menu 8 logic diagram

Getting Safety Product System Mechanical Electrical Technical Component UL Introduction Optimization **Parameters** Diagnostics information Information design Installation Installation started data sizing Information

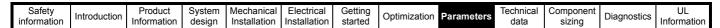
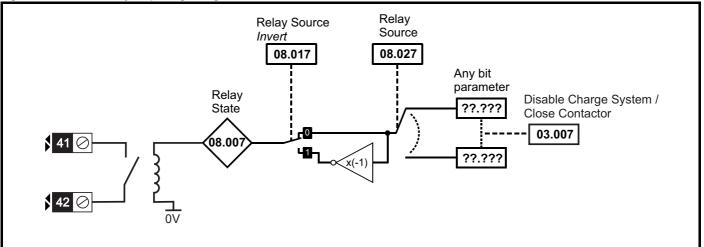



Figure 9-9 Menu 8 Relay output logic diagram

The drive has eight digital I/O terminals (T22, T24 to T29 and the relay) and an enable input. Each input has the same parameter structure. The digital I/O is sampled every 2 ms, except when inputs are routed to the limit switches Pr 06.035 and Pr 06.036 when the sample time is reduced to 250 μ s. Any changes to the source/destination parameters only become effect after drive reset is activated.

I/O	Sample rate	Function
T24 to T26	2 ms	Digital input or output
T27 to T29	2 ms	Digital input
Relay	4 ms	
T22	2 ms	24 V output

Table 9-10 Digital I/O

Tarminal funa	I/O state	Inv	vert		Source / destination	Output	select
Terminal type	Parameter	Parameter	Default	Parameter	Default	Parameter	Default
T24 input / output 1	Pr 08.001	Pr 08.011	0	Pr 08.021	Pr 03.009 – Synchronized	Pr 08.031	1
T25 input / output 2	Pr 08.002	Pr 08.012	0	Pr 08.022	Pr 03.008 – Contactor closed	Pr 08.032	0
T26 input / output 3	Pr 08.003	Pr 08.013	0	Pr 08.023	Pr 10.001 – Drive OK	Pr 08.033	1
T27 input 4	Pr 08.004	Pr 08.014	0	Pr 08.024	Pr 10.033 – Drive reset		
T28 input 5	Pr 08.005	Pr 08.015	0	Pr 08.025	Pr 0.000 – Not used		
T29 input 6	Pr 08.006	Pr 08.016	0	Pr 08.026	Pr 0.000 – Not used		
T41 / 42 Relay	Pr 08.007	Pr 08.017	0	Pr 08.027	Pr 03.007 – Close contactor		
T22 24 V output	Pr 08.008	Pr 08.018	1	Pr 08.028	Pr 0.000 – Not used		
T31 Safe Torque Off / Drive enable	Pr 08.009 and Pr 08.040						

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
--------------------	--------------	---------------------	---------------	----------------------------	----------------------------	--------------------	--------------	------------	----------------	------------------	-------------	-------------------

Table 9-11 Menu 8 Regen parameter descriptions

	Parameter	Range(‡)	Default(⇔)			Ту	Эе		
08.001	Digital I/O 01 State	Off (0) or On (1)		RO	Bit	ND	NC	PT	
08.002	Digital I/O 02 State	Off (0) or On (1)		RO	Bit	ND	NC	PT	
08.003	Digital I/O 03 State	Off (0) or On (1)		RO	Bit	ND	NC	PT	
08.004	Digital Input 04 State	Off (0) or On (1)		RO	Bit	ND	NC	PT	
08.005	Digital Input 05 State	Off (0) or On (1)		RO	Bit	ND	NC	PT	
08.006	Digital Input 06 State	Off (0) or On (1)		RO	Bit	ND	NC	PT	
08.007	Relay Output State	Off (0) or On (1)		RO	Bit	ND	NC	PT	
800.80	24V Supply Output State	Off (0) or On (1)		RO	Bit	ND	NC	PT	
08.009	STO Input 01 State	Off (0) or On (1)		RO	Bit	ND	NC	PT	
08.010	External Trip Mode	Disable (0), STO 1 (1), STO 2 (2), STO 1 OR STO 2 (3)	Disable (0)	RW	Txt				US
08.011	Digital I/O 01 Invert	Not Invert (0) or Invert (1)	Not Invert (0)	RW	Txt				US
08.012	Digital I/O 02 Invert	Not Invert (0) or Invert (1)	Not Invert (0)	RW	Txt				US
08.013	Digital I/O 03 Invert	Not Invert (0) or Invert (1)	Not Invert (0)	RW	Txt				US
08.014	Digital Input 04 Invert	Not Invert (0) or Invert (1)	Not Invert (0)	RW	Txt				US
08.015	Digital Input 05 Invert	Not Invert (0) or Invert (1)	Not Invert (0)	RW	Txt				US
08.016	Digital Input 06 Invert	Not Invert (0) or Invert (1)	Not Invert (0)	RW	Txt				US
08.017	Relay Invert	Not Invert (0) or Invert (1)	Not Invert (0)	RW	Txt				US
08.018	24V Supply Output Invert	Not Invert (0) or Invert (1)	Invert (1)	RW	Txt				US
08.020	Digital I/O Read Word	0 to 511		RO	Num	ND	NC	PT	
08.021	Digital I/O 01 Source/Destination	0.000 to 59.999	3.009	RW	Num	DE		PT	US
08.022	Digital I/O 02 Source/Destination	0.000 to 59.999	3.008	RW	Num	DE		PT	US
08.023	Digital I/O 03 Source/Destination	0.000 to 59.999	10.001	RW	Num	DE		PT	US
08.024	Digital Input 04 Destination	0.000 to 59.999	10.033	RW	Num	DE		PT	US
08.025	Digital Input 05 Destination	0.000 to 59.999	0.000	RW	Num	DE		PT	US
08.026	Digital Input 06 Destination	0.000 to 59.999	0.000	RW	Num	DE		PT	US
08.027	Relay Output Source	0.000 to 59.999	3.007	RW	Num			PT	US
08.028	24V Supply Output Source	0.000 to 59.999	0.000	RW	Num			PT	US
08.029	Input Logic Polarity	Negative Logic (0) or Positive Logic (1)	Positive Logic (1)	RW	Txt				US
08.031	Digital I/O 01 Output Select	Off (0) or On (1)	On (1)	RW	Bit				US
08.032	Digital I/O 02 Output Select	Off (0) or On (1)	Off (0)	RW	Bit				US
08.033	Digital I/O 03 Output Select	Off (0) or On (1)	On (1)	RW	Bit				US
08.040	STO Input 02 State	Off (0) or On (1)		RO	Bit	ND	NC	PT	
08.041	Keypad Run Button State	Off (0) or On (1)		RO	Bit	ND	NC	PT	
08.042	Keypad Auxiliary Button State	Off (0) or On (1)		RO	Bit	ND	NC	PT	
08.043	24V Supply Input State	Off (0) or On (1)		RO	Bit	ND	NC	PT	
08.044	Keypad Stop Button State	Off (0) or On (1)		RO	Bit	ND	NC	PT	
08.051	Keypad Run Button Invert/Toggle	Not Invert (0), Invert (1) or Toggle (2)	Not Invert (0)	RW	Txt				US
08.052	Keypad Auxiliary Button Invert/Toggle	Not Invert (0), Invert (1) or Toggle (2)	Not Invert (0)	RW	Txt				US
08.053	24V Supply Input Invert	Not Invert (0) or Invert (1)	Not Invert (0)	RW	Txt				US
08.061	Keypad Run Button Destination	0.000 to 59.999	0.000	RW	Num	DE		PT	US
08.062	Keypad Auxiliary Button Destination	0.000 to 59.999	0.000	RW	Num	DE		PT	US
08.063	24V Supply Input Destination	0.000 to 59.999	0.000	RW	Num	DE		PT	US
08.071	DI/O Output Enable Register 1	0000000000000000000 to 11111111111111111	0000000000000000	RW	Bin			PT	US
08.072	DI/O Input Register 1	0000000000000000000 to 11111111111111111		RO	Bin	ND	NC	PT	
08.073	DI/O Output Register 1	0000000000000000 to 1111111111111111	000000000000000	RW	Bin			PT	

RW	Read / Write	RO	Read only	Num	Number parameter	Bit	Bit parameter	Txt	Text string	Bin	Binary parameter	FI	Filtered
ND	No default value	NC	Not copied	PT	Protected parameter	RA	Rating dependent	US	User save	PS	Power-down save	DE	Destination

	08.0	001	Digital I/O	01 State					
	08.0	002	Digital I/O	02 State					
	08.0	003	Digital I/O	03 State					
	08.0	004	Digital Inp	ut 04 Sta	te				
	08.0	005	Digital Inp	ut 05 Sta	te				
	08.0	006	Digital Inp	ut 06 Sta	te				
	08.0	007	Relay Out	put State					
	08.0	800	24V Supp	ly Output	State				
	08.0	009	STO Input	01 State					
r	RO	Bit				ND	NC	PT	

Installation Installation

Electrical

Getting

started

Optimization

Parameters

Technical

data

Component

sizing

UL

Information

Diagnostics

Mechanical

The Digital I/O State parameter shows the state of digital I/O on the drive. All I/O except Digital Input 11 (Keypad Run Button), Digital Input 12 (Keypad Auxiliary Button), Digital Input 13 (24V Supply Input) and Digital Input 14 (Keypad Stop Button) use IEC61131-2 logic levels. As default the inputs use positive logic, and so the state parameter is 0 if the digital I/O is low or 1 if the digital I/O is high. *Input Logic Polarity* (08.029) can be set to zero to change the logic for Digital I/O-6 to negative logic, so that the state parameter is 0 if the digital I/O is high or 1 if the digital I/O is low. The state parameter represents the digital I/O state whether it is an input or an output. If the digital I/O is configured as an output to be controlled using the *Digital I/O Output Register 1* (08.073) then the state parameter will still show the state of the output even though the route source is zero and the invert parameter has no effect.

Digital Input 11 (Keypad Run Button), Digital Input 12 (Keypad Auxiliary Button) and Digital Input 14 (Keypad Stop Button) represent the state of the Run, Auxiliary and Stop buttons on any keypad fitted to the drive; the input state is determined by ORing the state of the button on each keypad connected to the drive, if the button is pressed the state parameter is one otherwise it is zero. If a keypad is not fitted the state parameters are zero.

Digital Input 13 (24 V Supply Input) is an external 24 V supply input that is monitored and can be used as a 24 V digital input if an external 24 V supply is not required. The state parameter is low for the voltage range from 0 V to 17 V and high for the voltage range above 18 V. As the input is a power supply it will consume significant current if the level is taken above 24 V when the drive is running from its internal power supply, or at any voltage level if this input is the only power supply to the drive.

Digital Input 09 (STO input 1) and Digital Input 10 (STO input 2) correspond to two safe torque off channels within the drive. Both channels must be in the high state for the drive to be enabled. The state parameters are 0 if the digital input is low, or 1 if the digital input is high. If option slot 3 does not contain an option module providing safety functions then both safe torque off channels are connected to their state parameters and the safe torque off input can enable/disable the drive. If an option module providing safety functions is fitted in option slot 3 then the option module can disable the drive by breaking the path of either one or both safe torque off channels. See Menu 6 for details of the drive enable system.

In Regen mode the enable input of the Regen drive has no Safe Torque Off safety function. Refer to section 2 *Introduction* Safe Torque Off warning on page 8.

	08.0	010	External 1	Trip Mode				_		
	RW	Txt								US
Û			(0), STO 1 (TO 1 OR ST		(2),	\Rightarrow		Disable	(0)	

If External Trip Mode (08.010) = 0 the safe torque off inputs simply enable or disable the drive. If External Trip Mode (08.010) > 0 it is possible to enable the following trip functions.

External Trip Mode (08.010)	Actions
0	Safe torque off inputs do not initiate trips
1	External Trip.001 if Safe Torque Off Input 1 is low
2	External Trip.002 if Safe Torque Off Input 2 is low
3	External Trip.001 if Safe Torque Off is low OR External Trip.002 if Safe Torque Off Input 2 is low

Safety

information

Û

Product

Information

Off (0) or On (1)

Introduction

System

design

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
--------------------	--------------	---------------------	---------------	----------------------------	----------------------------	--------------------	--------------	------------	----------------	------------------	-------------	-------------------

	08.0	11	Digital I/	O 01 Invert							
	08.0	12	Digital I/	O 02 Invert							
	08.0	13	Digital I/	O 03 Invert							
	08.0	14	Digital Ir	nput 04 Inve	rt						
	08.0	15	Digital Input 05 Invert								
	08.0	16	Digital Ir	nput 06 Inve	rt						
	08.0	17	Relay In	vert						•	
RV	N	Txt									US
Û		Not	Invert (0)	or Invert (1)		⇧			Not Inver	t (0)	

A value of 0 or 1 allows the digital I/O to be non-inverted or inverted respectively.

		08.0	18	24V Supp	ly Output	Invert					
	RV	RW Txt									US
Û	ţ	Not Invert (0) or Invert (1)					\Rightarrow		Invert (1)	

See Digital I/O 01 Invert (08.011).

	08.0	20	Digital I/O	Read Wo	rd					
RO) Num					N	D	NC	PT	
\$		0 to 511								

Digital I/O Read Word (08.020) reflects the state of digital input/output 1 to STO input 1 as given below. Each bit matches the value of the state parameter for the respective digital input or output.

Digital I/O Read Word (08.020) bit	Digital I/O
0	Digital I/O 1
1	Digital I/O 2
2	Digital I/O 3
3	Digital Input 4
4	Digital Input 5
5	Digital Input 6
6	Relay
7	24 V Output
8	STO Input 1

	08.0	21	Digital I/O	01 Source	e/Destinati	on			
RV	V Num DE							PT	US
$\hat{\mathbb{T}}$	0.000 to 59.999					$\hat{\Gamma}$		3.009	

The Digital I/O Source/Destination parameters provide the routing for the source and/or destination for the digital I/O.

	08.0	22	Digital I/O	02 Source	e/Destinati	on			
R\	W	V Num DE						PT	US
$\hat{\mathbb{Q}}$		0.000 to 59.999						3.008	

See Digital I/O 01 Source/Destination (08.021).

		08.0	23	Digital I/O	03 Source	e/Destinati	on				
I	RV	V	Num	DE					PT		US
	Û	0.000 to 59.999							10.001	1	

See Digital I/O 01 Source/Destination (08.021).

	08.0	24	Digital Inp	out 04 Dest	tination					
R	:W	W Num DE						PT		US
Û		0.000 to 59.999						10.033	3	

See Digital I/O 01 Source/Destination (08.021).

	Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
--	--------------------	--------------	------------------------	---------------	----------------------------	----------------------------	--------------------	--------------	------------	-------------------	------------------	-------------	-------------------

	08.0	25	Digital Inp	out 05 Des	tination				
F	RW	Num	DE					PT	US
Û	0.000 to 59.999					ightharpoons		0.000	

See Digital I/O 01 Source/Destination (08.021).

	08.0	26	Digital Inp	out 06 Des	tination				
RV	RW Num DE							PT	US
Û	0.000 to 59.999					\Rightarrow		0.000	

See Digital I/O 01 Source/Destination (08.021).

	08.027 Relay Output Source								
RV	W Num							PT	US
Û	0.000 to 59.999					\Rightarrow		3.007	

See Digital I/O 01 Source/Destination (08.021).

	08.0)28	24V Supply Output Source								
RV	N	Num			PT						US
Û	0.000 to 59.999					\uparrow			0.000		

See Digital I/O 01 Source/Destination (08.021).

	08.0	29	Input Log	ic Polarity						
R\	RW Txt									US
Û	Negative Logic (0) or Positive Logic (1)					\Diamond		Positive Lo	gic (1)	

See Digital I/O 01 State (08.001).

08.031 Digital I/O 01 Output Select											
R\	W	Bit									US
Û	Off (0) or On (1)								On (1)	

The Digital I/O Output Select parameters allow the I/O to be selected as an input (0) or an output (1). These parameters are only present for digital I/O that can be used as an input or output.

		08.0	32	Digital I/O 02 Output Select									
	RW Bi		Bit									US	
${\bf \hat{v}}$		Off (0) or On (1)					ightharpoons			Off (0))		

See Digital I/O 01 Output Select (08.031).

	08.0	33	Digital I/O 03 Output Select									
RV	RW Bit										US	
Û	Off (0) or On (1)					\Rightarrow			On (1))		

See Digital I/O 01 Output Select (08.031).

	08.0	40	STO Input 02 State									
RO	O Bit					N	D	NC	PT			
Û	Off (0) or On (1)					\Diamond						

See Digital I/O 01 State (08.001).

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
--------------------	--------------	---------------------	---------------	----------------------------	-------------------------	--------------------	--------------	------------	----------------	------------------	-------------	-------------------

80	.041	Keypad R	un Button	State						
08	.042	Keypad A	uxiliary Bı	utton State)					
80	08.043 24V Supply Input State									
08	.044	Keypad St	op Buttor	1 State						
RO	Bit				N	D	NC	PT		
Û	Off (0) or On (1)				\Diamond					

See Digital I/O 01 State (08.001).

	08.0	51	Keypad R	un Button	Invert/Tog	gle					
	08.052 Keypad Auxiliary Button Invert/Toggle										
RV	RW Txt										US
Û	Not Invert (0), Invert (1), Toggle (2)				e (2)	ightharpoons			Not Inver	t (0)	

A value of 0 or 1 allows the input state to be non-inverted or inverted respectively. An additional toggle function is provided for Keypad Run button/ Keypad Auxiliary button inputs. The toggle function output changes state on each rising edge (0 to 1 change) at its input.

	08.053 24V Supply Input Invert									
RV	٧	Txt								US
\$		Not	Invert (0) or	Invert (1)		ightharpoons		Not Inver	t (0)	

See Digital I/O 01 Source/Destination (08.021).

	08.0	61	Keypad R	Keypad Run Button Destination											
	08.0	62	Keypad A	Ceypad Auxiliary Button Destination											
	08.0	63	24V Supp	ly Input D	estination										
RV	٧	Num	DE						PT		US				
\$			0.000 to 59	.000 to 59.999											

See Digital I/O 01 Source/Destination (08.021).

	08.071 Digital I/O Output Enable Reg									
RV	N	Bin						PT		US
\$	C	000000000	0000000 to	11111111111	111111	ightharpoons	00	000000000	000000	

The bits in the Digital I/O Output Enable Register 1 (08.071), Digital I/O Input Register 1 (08.072) and Digital I/O Output Register 1 (08.073) each correspond with one digital I/O as shown below. The update rate of the individual bits in these registers differs depending upon the I/O.

DI/O	Bit	Function		Bit upda	te rate
וטיוט	ы	Function	Input Register	Output Register	Output Enable Register
1	0	Digital Input/Output	2 ms	250 µs	Background
2	1	Digital Input/Output	2 ms	250 μs	Background
3	2	Digital Input/Output	2 ms	2 ms	Background
4	3	Digital Input	250 µs	Not applicable	Not applicable
5	4	Digital Input	250 µs	Not applicable	Not applicable
6	5	Digital Input	2 ms	Not applicable	Not applicable
7	6	Relay Output	Bit always 0	2 ms	Background
8	7	24V Supply Output	Bit always 0	2 ms	Background
9	8	Safe Torque Off 1	2 ms	Not applicable	Not applicable
10	9	Safe Torque Off 2	2 ms	Not applicable	Not applicable
11	10	Keypad Run Button	Background	Not applicable	Not applicable
12	11	Keypad Auxiliary Button	Background	Not applicable	Not applicable
13	12	24V Supply Input	2 ms	Not applicable	Not applicable
14	13	Keypad Stop Button	Background	Not applicable	Not applicable
15	14	Not applicable	Not applicable	Not applicable	Not applicable
16	15	Drive Reset Button	Background	Not applicable	Not applicable

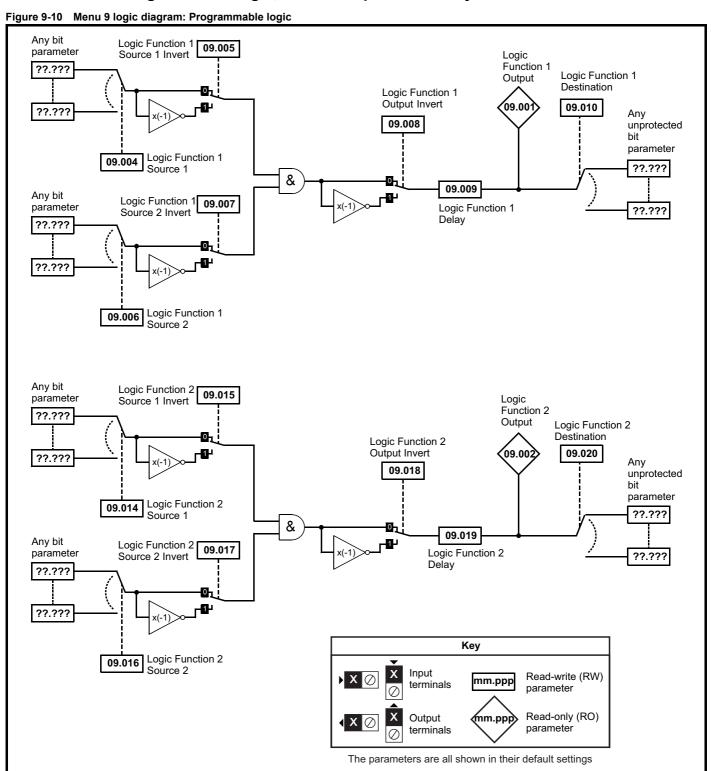
Safety	Introduction	Product	System	Mechanical	Electrical	Getting	Optimization	Parameters	Technical	Component	Diagnostics	UL
information	IIIIIOddciioii	Information	design	Installation	Installation	started	Optimization	raiailleteis	data	sizing	Diagnostics	Information

The Digital I/O Input Register 1 (08.072) is always active and shows the value in the Digital I/O State parameter for all digital I/O configured as inputs. Bits in the Digital I/O Output Register 1 (08.073) can be used to control the digital I/O directly. The bits control the output directly and are not modified by the corresponding Digital I/O Invert/Toggle function. The bits in the Digital I/O Output Register 1 (08.073) only control the corresponding digital output if all the conditions below are met:

- 1. The corresponding bit in the Digital I/O Output Enable Register 1 (08.071) must be set to 1.
- 2. The digital I/O must be an output, or it must be an input/output and the corresponding Digital I/O Output Select parameter must be one.
- 3. The corresponding Digital I/O Source/Destination parameter is not as valid source (e.g. 0.000) and the drive has been powered-up or reset since it was first selected.

If the above conditions are not met, the digital output is controlled by the normal logic.

I		08.0	72	Digital I/O	Input Reg	jister 1				
	RC)	Bin						PT	
ĺ	Û	00000000000000000000000000000000000000					$\hat{\Gamma}$			


See Digital I/O Output Enable Register 1 (08.071).

	08.0	73	Digital I/O	Output R	egister 1					
R	W	Bin						PT		
$\hat{\mathbf{v}}$	0	000000000	0000000 to	11111111111	111111	\Diamond	00	000000000	000000	

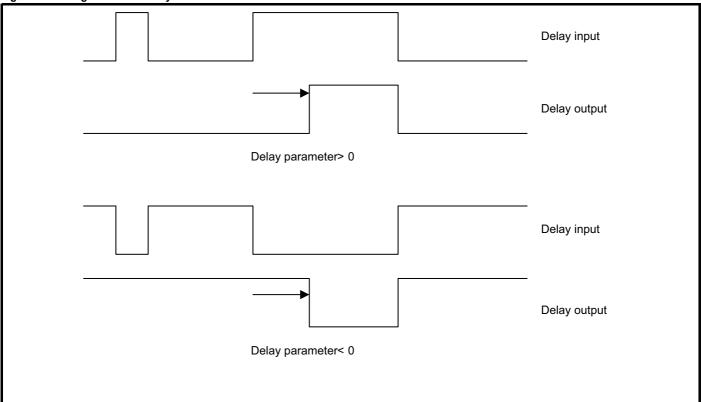
See Digital I/O Output Enable Register 1 (08.071).

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
--------------------	--------------	------------------------	---------------	----------------------------	----------------------------	--------------------	--------------	------------	-------------------	------------------	-------------	-------------------

9.9 Menu 9: Programmable logic, motorized pot and binary sum

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information	
--------------------	--------------	---------------------	---------------	----------------------------	----------------------------	--------------------	--------------	------------	----------------	------------------	-------------	-------------------	--

9.9.1 Logic functions


The logic functions are always active even if the sources and destinations are not routed to valid parameters. If the sources are not valid parameters then the source values are taken as 0. The update rate for each of the logic functions is always 4 ms.

The logic function consists of an AND gate with inverters on each input and an inverter on the output. Some of the other standard logic functions can be produced as shown in the table below.

Logic function	Source 1 Invert	Source 2 Invert	Output Invert
AND	0	0	0
NAND	0	0	1
OR	1	1	1
NOR	1	1	0

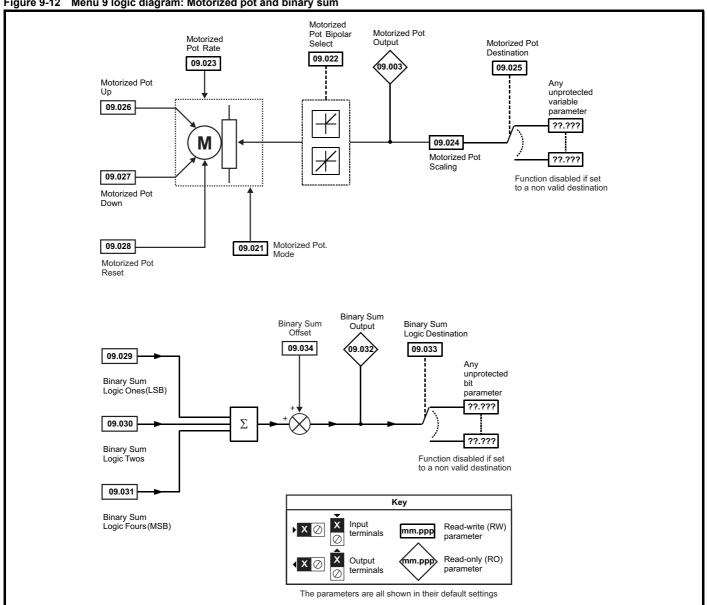

A delay function is provided at the output of the logic functions. If Logic Function 1 Delay (09.009) or Logic Function 2 Delay (09.019) is positive then the output does not become 1 until the input to the delay has been at 1 for the delay time. If Logic Function 1 Delay (09.009) or Logic Function 2 Delay (09.019) is negative then the output remains at 1 until the input to the delay has been 0 for the delay time.

Figure 9-11 Logic function delay

Menu 9 logic diagram: Motorized pot and binary sum Figure 9-12

9.9.2 Motorised pot

If Motorised Pot Reset (09.028) = 1 then the motorised pot is disabled and held in its reset state with Motorised Pot Output (09.003) = 0.0 %. If Motorised Pot Reset (09.028) = 0 the motorised pot is enabled even if Motorised Pot Destination (09.025) is not routed to a valid parameter. The sample rate of the motorised pot is always 4 ms.

When the motorised pot is active Motorised Pot Output (09.003) can be increased or decreased by setting Motorised Pot Up (09.026) or Motorised Pot Down (09.027) to 1 respectively. If both Motorised Pot Up (09.026) and Motorised Pot Down (09.027) are 1 then Motorised Pot Output (09.003) is increased. The rate of change of Motorised Pot Output (09.003) is defined by Motorised Pot Rate (09.023) which gives the time to change from 0 to 100 %. The time to change from -100 % to 100 % is Motorised Pot Rate (09.023) x 2. If Motorised Pot Bipolar Select (09.022) = 0 then Motorised Pot Output (09.003) is limited in the range 0.00 % to 100.00 %, otherwise it is allowed to change in the range from -100.00 % to 100.00 %.

Motorised Pot Mode (09.021) defines the mode of operation as given in the table below.

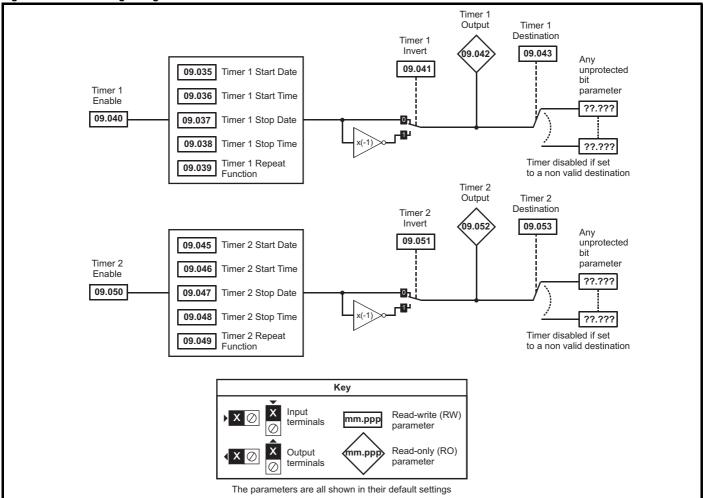
Motorised Pot Mode (09.021)	Motorised Pot Output (09.003)	Motorised Pot Up (09.026) and Motorised Pot Down (09.027) active
0	Reset to zero at power-up	Always
1	Set to power-down value at power-up	Always
2	Reset to zero at power-up	When Drive Active (10.002) = 1
3	Set to power-down value at power-up	When Drive Active (10.002) = 1
4	Reset to zero at power-up and when <i>Drive Active</i> (10.002) = 0	When Drive Active (10.002) = 1

Motorised Pot Scaling (09.024) introduces a scaling factor at the output of the motorised pot before the output is routed to the destination. If Motorised Pot Scaling (09.024) Motorised Pot Scaling (09.024) > 1.000 the output will exceed the range of the destination parameter, and so the destination parameter will be at its maximum or minimum before the output of the motorised pot reaches the limits of its range.

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
--------------------	--------------	------------------------	---------------	----------------------------	----------------------------	--------------------	--------------	------------	-------------------	------------------	-------------	-------------------

9.9.3 Binary sum function

The binary sum function is always active even if the destination is not routed to valid a parameter. The update rate for the binary sum is always 4 ms. The output of the binary sum block is given by:

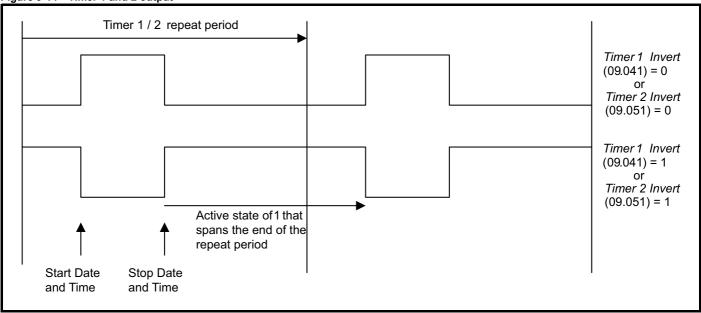

 $\textit{Binary Sum Output} \ (09.032) = \textit{Binary Sum Offset} \ (09.034) + (\textit{Binary Sum Ones} \ (09.029) \times 1) + (\textit{Binary Sum Twos} \ (09.030) \times 2) + (\textit{Binary Sum Fours} \ (09.031) \times 4)$

Binary Sum Destination (09.033) defines the destination for the binary sum output. The routing for this destination is special if the maximum of the destination parameter = 7 + Binary Sum Offset (09.034) as follows:

Destination parameter = Binary Sum Output (09.032), subject to the parameter minimum.

If the maximum of the destination parameter > 7, Binary Sum Output (09.032) is routed in the same way as any other destination where the destination target is at its full scale value when the Binary Sum Output (09.032) = 7 + Binary Sum Offset (09.034).

Figure 9-13 Menu 9 logic diagram: Timers


Safety	Introduction	Product	System	Mechanical	Electrical	Getting	Optimization	Parameters	Technical	Component	Diagnostics	UL
information	Introduction	Information	design	Installation	Installation	started	Optimization	r arameters	data	sizing	Diagnostics	Information

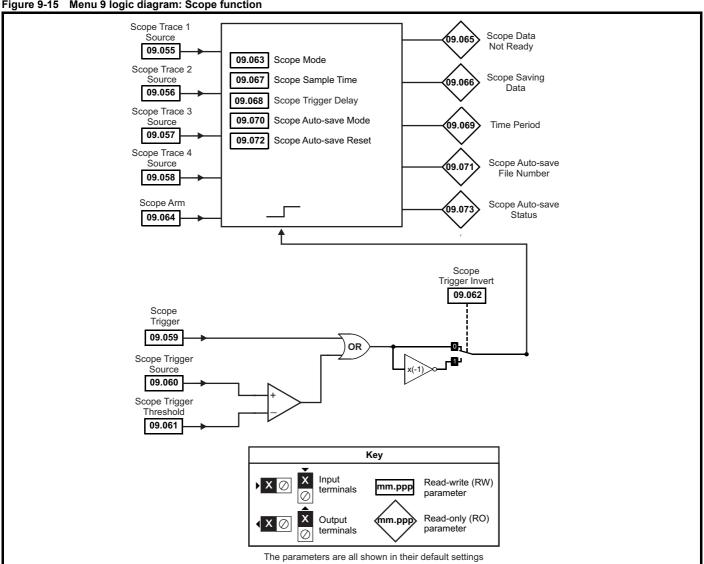
9.9.4 Timers

If the enable input to a timer is active and the repeat function is set to a non-zero value then the timer is active even if the destination is not routed to valid a parameter. The timers are updated in the background task and have a resolution of 1 s.

The following is a description of Timer 1, but Timer 2 behaves in the same way. If *Timer 1 Invert* (09.041) = 0 then *Timer 1 Output* (09.042) is inactive before the *Timer 1 Start Date* (09.035) / *Timer 1 Start Time* (09.036), active between this date/time and *Timer 1 Stop Date* (09.037) / *Timer 1 Stop Time* (09.038) and then inactive after the stop time/date within the timer 1 repeat period as shown in the diagram below.

Figure 9-14 Timer 1 and 2 output

Timer 1 Repeat Function (09.039) defines the length of the repeat period. For example, if Timer 1 Repeat Function (09.039) = 2 then the repeat period is one day. The output is inactive until the time reaches the hour, minute and second defined in Timer 1 Start Time (09.036), and remains active until the time reaches the hour, minute and second defined in Timer 1 Stop Time (09.038). Different repeat periods may be selected as given in the table below. The table shows the constituent parts of the date and time that are used to determine the start and stop events. If the repeat period is set to every week then Timer 1 Start Date (09.035) and Timer 1 Stop Date (09.037) define the day of the week and not the date (i.e. 00.00.00 = Sunday, 00.00.01 = Monday, etc.). If the stop time event is set to occur at or before the start time event or the Timer 1 Repeat Function (09.039) = 0 or Timer 1 Enable (09.040) = 0 the output remains inactive at all times (i.e. Timer 1 Output (09.042) = 0 if Timer 1 Invert (09.041) = 0)


Timer 1 Repeat Function (09.039)	Repeat period	Second	Minute	Hour	Day	Month	Year	Day of week
0	None							
1	Hour	•	•					
2	Day	•	•	•				
3	Week	•	•	•				•
4	Month	•	•	•	•			
5	Year	•	•	•	•	•		
6	One off	•	•	•	•	•	•	
7	Minute	•						

As *Timer 1 Invert* (09.041) inverts the timer output it can be used to give an active state of 0 instead of 1. Alternatively it can be used to give an active state of 1, but for a time period that spans the ends of the repeat period as shown in the example above. It should be noted that if this method is used to allow the active period to span the ends of the repeat period then if the timer is disabled the output of the timer block before the invert becomes 0, and so the final output of the timer after the invert is 1.

If *Date/Time Selector* (06.019) is changed and the drive is reset then the source for the timers will change, therefore *Timer 1 Repeat Function* (09.039) and *Timer 2 Repeat Function* (09.049) are reset to 0 to disable the timers, and the date and time entries in the trip log are cleared.

Figure 9-15 Menu 9 logic diagram: Scope function

Menu 9 contains 2 logic block functions (which can be used to produce any type of 2 input logic gate, with or without a delay), a motorized pot function and a binary sum block. One menu 9 or one menu 12 function is executed every 4 ms. Therefore the sample time of these functions is 4 ms x number of menu 9 and 12 functions active. The logic functions are always active even if the sources and destinations are not routed to valid parameters. If the sources are not valid parameters then the source values are taken as 0.

Safety	Introduction	Product	System	Mechanical	Electrical	Getting	Ontimization	Doromotoro	Technical	Component	Diagnostics	UL
information	Introduction	Information	design	Installation	Installation	started	Optimization	Parameters	data	sizing	Diagnostics	Information

Table 9-12 Menu 9 Regen parameter descriptions

	Parameter	Range(兌)	Default(⇔)			Тур	Эе		
9.001	Logic Function 1 Output	Off (0) or On (1)		RO	Bit	ND	NC	PT	
9.002	Logic Function 2 Output	Off (0) or On (1)		RO	Bit	ND	NC	PT	
9.003	Motorized Pot Output	±100.00 %		RO	Num	ND	NC	PT	F
9.004	Logic Function 1 Source 1	0.000 to 59.999	0.000	RW	DE			PT	ι
9.005	Logic Function 1 Source 1 Invert	Off (0) or On (1)	Off (0)	RW	Bit				Ī
9.006	Logic Function 1 Source 2	0.000 to 59.999	0.000	RW	DE			PT	t
9.007	Logic Function 1 Source 2 Invert	Off (0) or On (1)	Off (0)	RW	Bit				
9.008	Logic Function 1 Output Invert	Off (0) or On (1)	Off (0)	RW	Bit			<u> </u>	t
9.009	Logic Function 1 Delay	±25.0 s	0.0 s	RW	Num				
9.010	Logic Function 1 Destination	0.000 to 59.999	0.000	RW	DE			PT	t
9.014	Logic Function 2 Source 1	0.000 to 59.999	0.000	RW	Num			PT	
9.015	Logic Function 2 Source 1 Invert	Off (0) or On (1)	Off (0)	RW	Bit				
9.016	Logic Function 2 Source 2	0.000 to 59.999	0.000	RW	Num			PT	
9.017	Logic Function 2 Source 2 Invert	Off (0) or On (1)	Off (0)	RW	Bit				
9.018	Logic Function 2 Output Invert	Off (0) or On (1)	Off (0)	RW	Bit				
9.019	Logic Function 2 Delay	±25.0 s	0.0 s	RW	Num			-	+
	,							DT	_
9.020	Logic Function 2 Destination	0.000 to 59.999	0.000	RW	DE			PT	
9.021	Motorized Pot Mode	0 to 4	0	RW	Num			 	
9.022	Motorized Pot Bipolar Select	Off (0) or On (1)	Off (0)	RW	Bit			-	_
9.023	Motorized Pot Rate	0 to 250 s	20 s	RW	Num			-	1
9.024	Motorized Pot Scaling	0.000 to 4.000	1.000	RW	Num			<u> </u>	_
9.025	Motorized Pot Destination	0.000 to 59.999	0.000	RW	DE			PT	
9.026	Motorized Pot Up	Off (0) or On (1)	Off (0)	RW	Bit		NC		
9.027	Motorized Pot Down	Off (0) or On (1)	Off (0)	RW	Bit		NC	L	
9.028	Motorized Pot Reset	Off (0) or On (1)	Off (0)	RW	Bit		NC	<u></u>	
9.029	Binary Sum Ones	Off (0) or On (1)	Off (0)	RW	Bit		NC	L	
9.030	Binary Sum Twos	Off (0) or On (1)	Off (0)	RW	Bit		NC	1	
9.031	Binary Sum Fours	Off (0) or On (1)	Off (0)	RW	Bit		NC		Ī
9.032	Binary Sum Output	0 to 255		RO	Num	ND	NC	PT	Ī
9.033	Binary Sum Destination	0.000 to 59.999	0.000	RW	DE			PT	
9.034	Binary Sum Offset	0 to 248	0	RW	Num				
9.035	Timer 1 Start Date	00-00-00 to 31-12-99	00-00-00	RW	Date				İ
9.036	Timer 1 Start Time	00:00:00 to 23:59:59	00:00:00	RW	Time				ı
9.037	Timer 1 Stop Date	00-00-00 to 31-12-99	00-00-00	RW	Date			 	t
9.038	Timer 1 Stop Time	00:00:00 to 23:59:59	00:00:00	RW	Time			 	t
9.039	Timer 1 Repeat Function	None (0), Hour (1), Day (2), Week (3), Month (4), Year (5), One off (6), Minute (7)	None (0)	RW	Txt				
9.040	Timer 1 Enable	Off (0) or On (1)	Off (0)	RW	Bit			L	
9.041	Timer 1 Invert	Off (0) or On (1)	Off (0)	RW	Bit			1	
9.042	Timer 1 Output	Off (0) or On (1)		RO	Bit	ND	NC	PT	Ī
9.043	Timer 1 Destination	0.000 to 59.999	0.000	RW	DE			PT	
9.045	Timer 2 Start Date	00-00-00 to 31-12-99	00-00-00	RW	Date				
9.046	Timer 2 Start Time	00:00:00 to 23:59:59	00:00:00	RW	Time			1	
9.047	Timer 2 Stop Date	00-00-00 to 31-12-99	00-00-00	RW	Date			1	
9.048	Timer 2 Stop Time	00:00:00 to 23:59:59	00:00:00	RW	Time				
9.049	Timer 2 Repeat Function	None (0), Hour (1), Day (2), Week (3), Month (4), Year (5), One off (6), Minute (7)	None (0)	RW	Txt				
9.050	Timer 2 Enable	Off (0) or On (1)	Off (0)	RW	Bit			L	
9.051	Timer 2 Invert	Off (0) or On (1)	Off (0)	RW	Bit			L	
9.052	Timer 2 Output	Off (0) or On (1)		RO	Bit	ND	NC	PT	1
9.053	Timer 2 Destination	0.000 to 59.999	0.000	RW	DE			PT	
9.055	Scope Trace 1 Source	0.000 to 59.999	0.000	RW	Num			PT	Ī
9.056	Scope Trace 2 Source	0.000 to 59.999	0.000	RW	Num			PT	Ī
9.057	Scope Trace 3 Source	0.000 to 59.999	0.000	RW	Num			PT	t
9.058	Scope Trace 4 Source	0.000 to 59.999	0.000	RW	Num			PT	
9.059	Scope Trigger	Off (0) or On (1)	Off (0)	RW	Bit			 	t
	Scope Trigger Source	0.000 to 59.999	0.000	RW	Num	-	-	PT	t

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
			_									

	Parameter	Range(;)	Default(⇔)			Тур	ре		
09.061	Scope Trigger Threshold	-2147483648 to 2147483647	0	RW	Num				US
09.062	Scope Trigger Invert	Off (0) or On (1)	Off (0)	RW	Bit				US
09.063	Scope Mode	Single (0), Normal (1), Auto (2)	Single (0)	RW	Txt				US
09.064	Scope Arm	Off (0) or On (1)	Off (0)	RW	Bit		NC		
09.065	Scope Data Not Ready	Off (0) or On (1)		RO	Bit	ND	NC	PT	
09.066	Scope Saving Data	Off (0) or On (1)		RO	Bit	ND	NC	PT	
09.067	Scope Sample Time	1 to 200	1	RW	Num				US
09.068	Scope Trigger Delay	0 to 100 %	0 %	RW	Num				US
09.069	Scope Time Period	0.00 to 200000.00 ms		RO	Num	ND	NC	PT	
09.070	Scope Auto-save Mode	Disabled (0), Overwrite (1), Keep (2)	Disabled (0)	RW	Txt				US
09.071	Scope Auto-save File Number	0 to 99	0	RO	Num				PS
09.072	Scope Auto-save Reset	Off (0) or On (1)	Off (0)	RW	Bit				
09.073	Scope Auto-save Status	Disabled (0), Active (1), Stopped (2), Failed (3)	Disabled (0)	RO	Txt				PS

RW	Read / Write	RO	Read only	Num	Number parameter	Bit	Bit parameter	Txt	Text string	Bin	Binary parameter	FI	Filtered
ND	No default value	NC	Not copied	PT	Protected parameter	RA	Rating dependent	US	User save	PS	Power-down save	DE	Destination
IP	IP address	Mac	Mac address	Date	Date parameter	Time	Time parameter	SMP	Slot,menu,parameter	Chr	Character parameter	Ver	Version number

	09.0	01	Logic Fur	ction 1 O	utput					
RO	С	Bit				N	D	NC	PT	
Û	Off (0) or On (1)					\Diamond				

Logic Function 1 Output (09.001) shows the output of logic function 1.

	09.0	02	Logic Fur	າction 2 Oເ	utput					
RO)	Bit				N	D	NC	PT	
\$	Off (0) or On (1)					\Rightarrow				

Logic Function 2 Output (09.002) shows the output of logic function 2.

	09.003 Motorized Pot Output Num				ut					
R	O Num					N	D	NC	PT	PS
$\hat{\mathbb{O}}$	±100.00 %		\uparrow							

Motorised Pot Output (09.003) shows the output of the motorised pot function.

	09.0	04	Logic Fun	ction 1 Sc	ource 1				
RV	V	DE						PT	US
\$	0.000 to 59.999					\Rightarrow		0.000	

Logic Function 1 Source 1 (09.004) defines input source 1 of logic function 1.

	09.0	05	Logic Fur	nction 1 Sc	ource 1 Inv	ert				
RV	N	Bit								US
\$	Off (0) or On (1)					\Rightarrow		Off (0)	

Setting Logic Function 1 Source 1 Invert (09.005) inverts input 1 of logic function 1.

	09.0	006	Logic Fur	nction 1 Sc	ource 2				
R	W	DE						PT	US
1	0.000 to 59.999					\Rightarrow		0.000	

Logic Function 1 Source 2 (09.006) defines input source 2 of logic function 1.

	Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
--	--------------------	--------------	------------------------	---------------	----------------------------	----------------------------	-----------------	--------------	------------	----------------	------------------	-------------	-------------------

	09.0	07	Logic Fur	oction 1 Sc	urce 2 Inv	ert				
RV	V	Bit								US
Û	Off (0) or On (1)					\Rightarrow		Off (0)	

Setting Logic Function 1 Source 2 Invert (09.007) inverts input 2 of logic function 1.

	09.0	800	Logic Fur	nction 1 O	ıtput Inver	t				
RV	N	Bit								US
Û	Off (0) or On (1)					ightharpoons		Off (0)	

Setting Logic Function 1 Output Invert (09.008) inverts the output of logic function 1.

	09.0	009	Logic Fur	nction 1 De	elay				
RV	N	Num							US
\$	±25.0 s					ightharpoons		0.0 s	

Logic Function 1 Delay (09.009) defines the delay at the output of logic function 1. If Logic Function 1 Delay (09.009) is positive then the output does not become 1 until the input to the delay has been at 1 for the delay time. If Logic Function 1 Delay (09.009) is negative then the output remains at 1 until the input to the delay has been 0 for the delay time. See Figure 9-11 Logic function delay on page 206.

1		09.0	10	Logic Fur	ction 1 De	stination				
I	RV	٧	DE						PT	US
I	(0.000 to 59.999					\Rightarrow		0.000	

Logic Function 1 Destination (09.010) defines the output destination of logic function 1.

	09.0	14	Logic Fur	nction 2 Sc	ource				
RV	N	Num						PT	US
\$	0.000 to 59.999							0.000	

Logic Function 2 Source 1 (09.014) defines input source 1 of logic function 2.

	09.0	15	Logic Fur	nction 2 Sc	ource 1 Inv	ert				
RV	N	Bit								US
Û	Off (0) or On (1)					ightharpoons		Off (0))	

Setting Logic Function 2 Source 1 Invert (09.015) inverts input 1 of logic function 2.

	09.0	16	Logic Fun	ction 2 Sc	ource 2				
RV	W Bit							PT	US
$\hat{\mathbf{v}}$	0.000 to 59.999							0.000	

Logic Function 2 Source 2 (09.016) defines input source 2 of logic function 2.

	09.0	17	Logic Fur	ction 2 Sc	urce 2 Inv	ert				
RV	Ν	Bit								US
$\hat{\mathbb{Q}}$	Off (0) or On (1)							Off (0)	

Setting Logic Function 2 Source 2 Invert (09.017) inverts input 2 of logic function 2.

	09.0	18	Logic Fur	nction 2 O	ıtput Inver	t				
RV	N	Bit								US
Û	Off (0) or On (1)					ightharpoons		Off (0))	

Setting Logic Function 2 Output Invert (09.018) inverts the output of logic function 2.

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information

		09.0	19	Logic Fur	nction 2 De	elay				
I	RV	٧	Num							US
ĺ	Û			±25.0	S		ightharpoons		0.0 s	

Logic Function 2 Delay (09.019) defines the delay at the output of logic function 2. If Logic Function 2 Delay (09.019) is positive then the output does not become 1 until the input to the delay has been at 1 for the delay time. If Logic Function 2 Delay (09.019) is negative then the output remains at 1 until the input to the delay has been 0 for the delay time. Figure 9-11 Logic function delay on page 206.

	09.0	20	Logic Fur	nction 2 De	estination				
RV	RW DE							PT	US
Û	0.000 to 59.999		ightharpoons		0.000				

Logic Function 2 Destination (09.020) defines the output destination of logic function 2.

	09.0	21	Motorized	Pot Mode)				
RW Num		Num							US
\$			0 to 4			介		0	

Motorised Pot Mode (09.021) defines the mode of operation as given in the table below.

Motorised Pot Mode (09.021)	Motorised Pot Output (09.003)	Motorised Pot Up (09.026) and Motorised Pot Down (09.027) active
0	Reset to zero at power-up	Always
1	Set to power-down value at power-up	Always
2	Reset to zero at power-up	When Drive Active (10.002) = 1
3	Set to power-down value at power-up	When Drive Active (10.002) = 1
4	Reset to zero at power-up and when <i>Drive Active</i> (10.002) = 0	When Drive Active (10.002) = 1

	09.0	22	Motorized	l Pot Bipol	ar Series					
RV	RW Bit									US
Û	\$		Off (0) or C	On (1)		ightharpoons		Off (0))	

If Motorised Pot Bipolar Select (09.022) = 0 then Motorised Pot Output (09.003) is limited in the range 0.00 % to 100.00 %, otherwise it is allowed to change in the range from -100.00 % to 100.00 %.

	09.0	23	Motorized	l Pot Rate				
RV	RW Num							US
Û			0 to 250) s	$\hat{\Gamma}$		20 s	

The rate of change of *Motorised Pot Output* (09.003) is defined by *Motorised Pot Rate* (09.023) which gives the time to change from 0 to 100 %. The time to change from -100 % to 100 % is *Motorised Pot Rate* (09.023) x 2.

	09.0	24	Motorized	l Pot Scali	ng				
RV	RW Num								US
\$			0.000 to 4	.000		\Rightarrow		1.000	

Motorised Pot Scaling (09.024) introduces a scaling factor at the output of the motorised pot before the output is routed to the destination. If Motorised Pot Scaling (09.024) Motorised Pot Scaling (09.024) > 1.000 the output will exceed the range of the destination parameter, and so the destination parameter will be at its maximum or minimum before the output of the motorised pot reaches the limits of its range.

	09.0	25	Motorized	l Pot Desti	nation				
RV	RW DE							PT	US
Û	0.000 to 59.999					\Diamond		0.000	

Logic Function 2 Destination (09.020) defines the output destination of the motorised pot function.

	09.0	26	Motorized Pot Up								
RV	N	Bit						NC			
Û	Off (0) or On (1)					\Diamond			Off (0))	

If Motorised Pot Up (09.026) = 1, then the Motorised Pot Output (09.003) will increase.

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information

	09.0	27	Motorized	Pot Dowr	1					
RV	W Bit						NC			
$\hat{\mathbb{Q}}$			Off (0) or C	n (1)		\Diamond		Off (0))	

If Motorised Pot Down (09.027) = 1, then the Motorised Pot Output (09.003) will decrease.

	09.0	28	Motorized	Pot Rese	t	-				
RV	W Bit						NC			
\Diamond			Off (0) or C	n (1)		ightharpoons		Off (0))	

If *Motorised Pot Reset* (09.028) = 1 then the motorised pot is disabled and held in its reset state with *Motorised Pot Output* (09.003) = 0.0 %. If *Motorised Pot Reset* (09.028) = 0 the motorised pot is enabled even if *Motorised Pot Destination* (09.025) is not routed to a valid parameter.

	09.0	29	Binary Su	m Ones					
RV	N	Bit				NC			
\$	Off (0) or On (1)		\Rightarrow		Off (0)			

	09.0	30	Binary Su	ım Twos					
RV	٧	Bit				NC			
Û	Off (0) or On (1)			\Rightarrow		Off (0))		

	09.031 Binary Sum Fours									
RV	W Bit						NC			
\$	Off (0) or On (1)					\Box		Off (0))	

	09.032 Binary Sum Output									
RO	RO Num					N	D	NC	PT	
Û	0 to 255					\Rightarrow				

The output of the binary sum block is given by:

Binary Sum Output (09.032) = Binary Sum Offset (09.034) + $(Binary Sum Ones (09.029) \times 1)$ + $(Binary Sum Twos (09.030) \times 2)$ + $(Binary Sum Fours (09.031) \times 4)$.

Binary Sum Destination (09.033) defines the destination for the binary sum output. The routing for this destination is special if the maximum of the destination parameter $\leq 7 + Binary Sum Offset$ (09.034) as follows:

Destination parameter = Binary Sum Output (09.032), subject to the parameter minimum.

If the maximum of the destination parameter > 7, *Binary Sum Output* (09.032) is routed in the same way as any other destination where the destination target is at its full scale value when the *Binary Sum Output* (09.032) = 7 + *Binary Sum Offset* (09.034).

		09.0	33	Binary Su	m Destina	tion				
	RW DE						PT	US		
1	Û	0.000 to 59.999				ightharpoons		0.000		

Binary Sum Destination (09.033) defines the destination for the binary sum output.

	09.	034	Binary Su	m Offset				
	RW	Num						US
${\bf \hat{U}}$		0 to 248			ightharpoons		0	

	09.0	35	Timer 1 St	tart Date						
RV	RW Date									US
$\hat{\mathbb{Q}}$	00-00-00 to 31-12-99					\Box		00-00-0	00	

Timer 1 Start Date (09.035) defines the start date within the repeat period of timer 1.

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
			_									

	09.0	36	Timer 1 S	tart Time						
RV	RW Time									US
Û	00:00:00 to 23:59:59					ightharpoons		00:00:0	00	

Timer 1 Start Time (09.036) defines the start time within the repeat period of timer 1.

	09.0	37	Timer 1 S	top Date					
R۱	N	Date							US
Û	00-00-00 to 31-12-99			\Rightarrow		00-00-0	00		

Timer 1 Stop Date (09.037) defines the stop date within the repeat period of timer 1.

	09.0	38	Timer 1 S	top Time						
R\	RW Time									US
Û	00:00:00 to 23:59:59					$\hat{\Gamma}$		00:00:0	00	

Timer 1 Stop Time (09.038) defines the stop time within the repeat period of timer 1.

	09.0	39	Timer 1 R	epeat Fun	ction					
RV	RW Txt							US		
⇕	None (0), Hour (1), Day (2), Week (3), Month (4), Year (5), One off (6), Minute (7)					\Rightarrow		None (0)	

Value	Text
0	None
1	Hour
2	Day
3	Week
4	Month
5	Year
6	One off
7	Minute

Timer 1 Repeat Function (09.039) defines the length of the repeat period. For example, if Timer 1 Repeat Function (09.039) = 2 then the repeat period is one day. The output is inactive until the time reaches the hour, minute and second defined in Timer 1 Start Time (09.036), and remains active until the time reaches the hour, minute and second defined in Timer 1 Stop Time (09.038). Different repeat periods may be selected as given in the table below.

The table shows the constituent parts of the date and time that are used to determine the start and stop events. If the repeat period is set to every week then *Timer 1 Start Date* (09.035) and *Timer 1 Stop Date* (09.037) define the day of the week and not the date (i.e. 00.00.00 = Sunday, 00.00.01 = Monday, etc.). If the stop time event is set to occur at or before the start time event or the *Timer 1 Repeat Function* (09.039) = 0 or *Timer 1 Enable* (09.040) = 0 the output remains inactive at all times (i.e. *Timer 1 Output* (09.042) = 0 if *Timer 1 Invert* (09.041) = 0).

Timer 1 Repeat Function (09.039)	Repeat period	Second	Minute	Hour	Day	Month	Year	Day of week
0	None							
1	Hour	•	•					
2	Day	•	•	•				
3	Week	•	•	•				•
4	Month	•	•	•	•			
5	Year	•	•	•	•	•		
6	One off	•	•	•	•	•	•	
7	Minute	•						

	09.0	40	Timer 1 Enable								
RV	N	Bit									US
\$	Off (0) or On (1)					\Diamond			Off (0)	

Timer 1 Enable (09.040) enables the timer 1 function. If Timer 1 Enable (09.040) = 0, then the output of the timer is always inactive, i.e. Timer 1 Output (09.042) = 0.

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
09.0	041	Timer 1 Inv	ert									

	09.0	41	Timer 1 In	vert						
RV	N	Bit								US
$\hat{\mathbf{U}}$	Off (0) or On (1)							Off (0)	

Timer 1 Invert (09.041) inverts the timer output to give an active state of 0 instead of 1. Alternatively it can be used to give an active state of 1, but for a time period that spans the ends of the repeat period as shown in the example above. It should be noted that if this method is used to allow the active period to span the ends of the repeat period then if the timer is disabled the output of the timer block before the invert becomes 0, and so the final output of the timer after the invert is 1.

	09.0	42	Timer 1 O	utput					
RV	٧	Bit			N	D	NC	PT	US
Û	Off (0) or On (1)				\Diamond				

Timer 1 Output (09.042) shows the output of timer function 1.

	09.0	43	Timer 1 D	estination						
R	W	DE						PT		US
$\hat{\mathbf{v}}$	0.000 to 59.999					ightharpoons		0.000	l	

Timer 1 Destination (09.043) defines the output destination of timer function 1.

	09.0	45	Timer 2 S	tart Date						
RV	N Date									US
Û	00-00-00 to 31-12-99					\Rightarrow		00-00-0	00	

Timer 2 Start Date (09.045) defines the start date within the repeat period of timer 2.

	09.0	46	Timer 2 S	tart Time						
RV	W Time									US
Û	00:00:00 to 23:59:59					\Diamond		00:00:0	00	

Timer 2 Start Time (09.046) defines the start time within the repeat period of timer 2.

	09.0	47	Timer 2 St	top Date						
R۱	N	Date								US
$\hat{\mathbf{v}}$	00-00-00 to 31-12-99					\Rightarrow		00-00-0	00	

Timer 2 Stop Date (09.047) defines the stop date within the repeat period of timer 2.

	09.0	48	Timer 2 S	top Time						
R۱	RW Time									US
$\hat{\mathbb{Q}}$	00:00:00 to 23:59:59				\Rightarrow		00:00:0	00		

Timer 2 Stop Time (09.048) defines the stop time within the repeat period of timer 2.

	09	.049	Timer 2 R	epeat Fun	ction					
	RW	Txt								US
Û		None (0), I Month (4), Ye	Hour (1), Da ear (5), One		. , .	\Diamond		None (0)	

Value	Text
0	None
1	Hour
2	Day
3	Week
4	Month
5	Year
6	One off
7	Minute

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
09.0)50	Timer 2 En	able				1		ПС			

Off (0)

Timer 2 Enable (09.050) enables the timer 2 function. If Timer 2 Enable (09.050) = 0, then the output of the timer is always inactive, i.e. Timer 2 Output (09.052) = 0.

	09.0	51	Timer 2 In	vert						
RV	N Bit									US
Û	Off (0) or On (1)					介		Off (0))	

Timer 2 Invert (09.051) inverts the timer output to give an active state of 0 instead of 1.

	09.0	52	Timer 2 O	utput						
RC	RO Bit					N	D	NC	PT	US
Û	Off (0) or On (1)		\Diamond							

Timer 2 Output (09.052) shows the output of timer function 2.

Off (0) or On (1)

		09.0	53	Timer 2 D	estination				
I	RV	٧	Bit						US
I	Û	0.000 to \$		0.000 to 59	9.999	$\hat{\Gamma}$		0.000	

Timer 2 Destination (09.053) defines the output destination of timer function 2.

	09.0	55	Scope Trace 1 Source									
RV	V	Num							PT		US	
Û	0.000 to 59.999			\Diamond			0.000					

Up to four scope sources can be selected using *Scope Trace 1 Source* (09.055) to *Scope Trace 4 Source* (09.058). If the source value is set to 0.000, or the source parameter does not exist or is non-visible, then no source is selected. The sources do not operate in the same way as normal source parameters in that the input to the scope is the actual value of the parameter and not a value scaled to a percentage based on the range of the parameter. If a scope trace source parameter is modified the actual change is not effective until the drive is reset.

	09.0	56	Scope Tra	ce 2 Sour	ce			_	
R۱	N	Num						PT	US
$\hat{\mathbb{Q}}$	0.000 to 59.999					\Rightarrow		0.000	

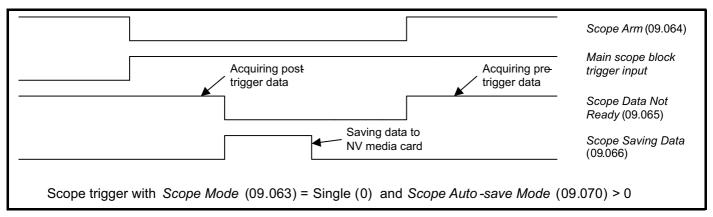
	09.0	57	Scope Tra	ace 3 Sour	ce				
R۷	W Num							PT	US
Û	0.000 to 59.999					\Rightarrow		0.000	

	09.0	58	Scope Tra	ace 4 Sour	ce				
RV	Num Num							PT	US
Û	0.000 to 59.999				\Rightarrow		0.000		

	09.0	159	Scope Tri	gger					
RV	Ν	Bit							
\$	Off (0) or On (1)				$\hat{\Gamma}$		Off (0))	

The scope is triggered by a rising edge at the input to the main scope block. If Scope Trigger Source (09.060) is set at its default value of 0.000 then the output of the trigger threshold comparator is 0, and so the scope can be triggered with Scope Trigger (09.059). Scope Trigger Invert (09.062) can be used to invert the trigger signal.

	09.0	160	Scope Tri	gger Sour	ce				
R۱	N	Num						PT	US
Û	0.000 to 59.999				ightharpoons		0.000		


Safety	Introduction	Product	System	Mechanical	Electrical	Getting	Ontimization	Baramatara	Technical	Component	Diagnostics	UL
information	Introduction	Information	design	Installation	Installation	started	Optimization	Parameters	data	sizing	Diagnostics	Information

If Scope Trigger (09.059) = 0, the scope can be triggered based on the level of a parameter defined by Scope Trigger Source (09.060) and the Scope Trigger Threshold (09.061). This source operates in the same way as the trace sources and a direct comparison is made between the actual parameter value and the threshold. Decimal places are ignored. The threshold detector output is 1 when the value from the scope trigger source is greater than Scope Trigger Threshold (09.061). If Scope Trigger Source (09.060) = 0.000, or it is used to select a parameter that does not exist or is non-visible, then the output of the threshold detector is 0.

09	.061	Scope Trig	ger Threshold			
RW	Num	ocope mg	ger rinconoid			US
Û	- I	7483648 to 21	47483647	⇒	0	
09.	.062	Scope Trig	ger Invert			
RW	Bit					US
Û		Off (0) or Or	ı (1)	⇒	Off (0)	
09.	.063	Scope Mod	le			
RW	Txt					US
Û	Single	e (0), Normal (1), Auto (2)	\Rightarrow	Single (0)	
		Value			Toyt	
		1				
		Value 0			Text Single Normal	

Single (0):

If Scope Arm (09.064) is set to 1 the scope starts to acquire pre-trigger data (i.e. enough data to provide information for the pre-trigger period) and Scope Data Not Ready (09.065) is set to 1. The scope can then be triggered on the next trigger event (i.e. a rising edge on the trigger input of the main scope block). Note that the scope can only be triggered once the required amount of pre-trigger data has been sampled. Failure to do this will result in the scope function not triggering correctly. When the trigger event occurs Scope Arm (09.064) is set to 0, and when the post-trigger data has been stored Scope Data Not Ready (09.065) is set to 0. If Scope Auto-save Mode (09.070) is non-zero, the data in the scope trace buffer is saved to a non-volatile media card fitted in the drive. When the save is complete (or data cannot be saved, i.e. no card fitted or no space left) the scope is ready again to receive data. If Scope Arm (09.064) is set to 1 the scope will start to acquire data again.

It is possible to read scope files via comms or into an option module. However, scope file transfer can only be initiated when *Scope Arm* (09.064) = 0, *Scope Data Not Ready* (09.065) = 0, *Scope Saving Data* (09.066) = 0 and at least one trace has been set up. While the file transfer is in progress *Scope Saving Data* (09.066) is set to 1.

The scope system is reset under any of the following conditions:

- 1. At power-up.
- 2. If the drive is reset when Scope Trace 1 Source (09.055) to Scope Trace 4 Source (09.058) have been modified.
- 3. The drive mode is changed.
- 4. If Scope Mode (09.063), Scope Sample Time (09.067) or Scope Trigger Delay (09.068) are modified.

When the scope is reset Scope Arm (09.064) is reset to 0 and the trace data is all cleared to 0.

Normal (1):

The scope operates in the same way as single mode except that *Scope Arm* (09.064) is automatically set back to 1 after a time delay of 1s once the post-trigger data has been acquired, and the scope data has been saved to a non-volatile media card if *Scope Auto-save Mode* (09.070) > 0.

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
--------------------	--------------	------------------------	---------------	----------------------------	----------------------------	-----------------	--------------	------------	-------------------	------------------	-------------	-------------------

Auto (2):

After the scope system is reset *Scope Data Not Ready* (09.065) is set to 1 and the scope begins to acquire data. Once the buffer is full *Scope Data Not Ready* (09.065) is set to 0 and the scope continues to acquire data. *Scope Arm* (09.064) has no effect on data acquisition. Provided *Scope Data Not Ready* (09.065) = 0 and *Scope Saving Data* (09.066) = 0 it is possible to read the data from the scope buffer as a scope file. Data acquisition is stopped when the file transfer begins. When the file transfer is complete, data acquisition begins again and *Scope Data Not Ready* (09.065) is set to 1 for a period that is long enough to fill the scope buffer with new data.

	09.0	64	Scope Arm								
RV	RW Bit							NC			US
Û	Off (0) or On (1)				ightharpoons			Off (0))		

	09	9.065	Scope Da	ta Not Rea	ıdy					
	RO	Bit				N	D	NC	PT	
Û		Off (0) or On (1)		介						

	09.0	166	Scope Sa	ving Data						
R	0	Bit				N	D	NC	PT	
Û	Off (0) or On (1)		$\hat{\Box}$							

	09.0	167	Scope Sa	mple Time	1				
RV	W Num								US
Û	1 to 200					ightharpoons		1	

Scope Sample Time (09.067) defines the sample rate of the scope function for all traces in 250 μ s units (i.e. if Scope Sample Time (09.067) = 4, the sample time is 1 ms).

	09.0	068	Scope Tri	gger Delay	/				
R\	W	/ Num							US
Û	0 to 100 %		ightharpoons		0 %				

Scope Trigger Delay (09.068) defines how much data is stored before and after the scope is triggered. If Scope Trigger Delay (09.068) = 0 % then no data is stored before the trigger and all the data is after the trigger. If Scope Trigger Delay (09.068) = 100 % then no data is stored after the trigger, but all the data is before the trigger.

I		09.0	09.069 Scope Time Period								
I	RO						N	D	NC	PT	
ľ	Û	0.00 to 200000.00 ms		\Diamond							

The scope function can capture up to 4000 bytes of parameter data. The *Scope Time Period* (09.069) gives the length of the time period covered by the scope buffer in milliseconds which depends on the number of traces stored, the sample time and the size of the parameters used as trace sources.

Sample time in milliseconds = $(250 \times 10^{-6} \times Scope Sample Time (09.067)) \times 1000$

Size of trace data is the sum of the number of bytes in each of the trace sources selected by Scope Trace 1 Source (09.055) to Scope Trace 4 Source (09.058).

Scope Time Period (09.069) (ms) = 4000 x Sample time in milliseconds / Size of trace data.

	09.0	70	Scope Au	ito-save M	ode					
F	RW	Txt						PS		
\hat{v}		Disabled ((0), Overwr	ite (1), Kee	p (2)	\Diamond		Disabled	(0)	

Value	Text
0	Disabled
1	Overwrite
2	Кеер

Auto-save mode can be used to store a scope file on a non-volatile media card at each trigger event. The auto-save system is held in reset if Scope Auto-save Reset (09.072) = 1. When the auto-save system is reset all the scope files in scope file folder on the NV media card are deleted, Scope Auto-save File Number (09.071) is reset to 0 and the auto-save system is inactive. If any of the file operations fail during reset Scope Auto-save Status (09.073) is 3 (Failed) when the reset is removed.

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
--------------------	--------------	---------------------	---------------	----------------------------	----------------------------	--------------------	--------------	------------	----------------	------------------	-------------	-------------------

The following conditions must be met for auto-saving to be active:

- 1. Scope Auto-save Mode (09.070) is non-zero
- 2. Scope Auto-save Reset (09.072) = 0
- 3. Scope Auto-save Status (09.073) = 1 (Active)
- 4. Scope Mode (09.063) = 0 (Single) or 1 (Normal)

If auto-saving is active an attempt is made to copy the scope file to a non-volatile media card fitted to the drive each time the post-trigger data has been acquired. The file name is SCP00XY.DAT, where XY is defined by Scope Auto-save File Number (09.071). If Scope Auto-save Mode (09.070) = 1 (Overwrite) then a file is over-written if it already exists. If Scope Auto-save Mode (09.070) = 2 (Keep) then if the file already exists the auto-save process is aborted. Scope Auto-save File Number (09.071) is incremented after a file is saved successfully and rolls over to 0 if it exceeds its maximum value.

If Scope Auto-save Status (09.073) = 0 (Disabled) and all the other conditions listed above for auto-saving to be active are met, then Scope Auto-save Status (09.073) changes to 1 (Active), so that auto-saving becomes active. If the scope file cannot be saved because the file exists and Scope Auto-save Mode (09.070) = 2 (Keep) then Scope Auto-save Status (09.073) is set to 2 (Stopped). If the scope file cannot be saved for any other reason then Scope Auto-save Status (09.073) is set to 3 (Failed). If Scope Auto-save Status (09.073) is no longer 1 (Active), auto-saving is aborted. Auto-saving can be made active again by setting Scope Auto-save Reset (09.072) to 1 and then to 0. If Scope Auto-save Mode (09.070) = 0 (Disabled) then Scope Auto-save Status (09.073) is set to 0 (Disabled), or if Scope Auto-save Mode (09.070) is non-zero then Scope Auto-save Status (09.073) is set to 1 (Active). It should be noted that Scope Auto-save Status (09.073) is a power-down save parameter, and so auto-save will remain inactive if Scope Auto-save Status (09.073) is 2 or 3 even if the drive is powered down and then powered up again.

	09.0	71	Scope Au	to-save Fi	le Number				
R	0	Num						PS	
Û	0 to 99					\Rightarrow		0	

	09.0	72	Scope Au	to-save Re	eset					
RV	W Bit							PS		
Û	Off (0) or On (1)					ightharpoons		Off (0))	

	09.	073	Scope Au	to-save St	atus					
	RO	Txt						PS		
$\hat{\mathbb{Q}}$	Dis	Disabled (0), Active (1), Stopped (2), Failed (3)						Disabled	(0)	

Safety	Introduction	Product	System	Mechanical	Electrical	Getting	Ontimization	Darametera	Technical	Component	Diagnostics	UL
information		Information	design	Installation	Installation	started	Optimization	Parameters	data	sizing	Diagnostics	Information

9.10 Menu 10: Status and trips

Table 9-13 Menu 10 Regen parameter descriptions

Pa	rameter	Range	Default		-	Туре	Э		
10.001 Drive Health	у	Off (0) or On (1)		RO	Bit	ND	NC	PT	
10.002 Drive Active		Off (0) or On (1)		RO	Bit	ND	NC	PT	
10.008 Rated Load	Reached	Off (0) or On (1)		RO	Bit	ND	NC	PT	
10.009 Current Limit	Active	Off (0) or On (1)		RO	Bit	ND	NC	PT	
10.010 Regenerating		Off (0) or On (1)		RO	Bit	ND	NC	PT	
10.011 Braking IGB	Γ Active	Off (0) or On (1)		RO	Bit	ND	NC	PT	
10.012 Braking Resi	stor Alarm	Off (0) or On (1)		RO	Bit	ND	NC	PT	
10.015 Supply Loss		Off (0) or On (1)		RO	Bit	ND	NC	PT	
10.016 Under Voltag		Off (0) or On (1)		RO	Bit	ND	NC	PT	
10.017 Inductor Ove		Off (0) or On (1)		RO	Bit	ND	NC	PT	
	emperature Alarm	Off (0) or On (1)		RO	Bit	ND	NC	PT	
10.019 Drive Warnin	ıg	Off (0) or On (1)		RO	Bit	ND	NC	PT	
10.020 Trip 0		0 to 255		RO	Txt	ND	NC	PT	PS
10.021 Trip 1		0 to 255		RO	Txt	ND	NC	PT	PS
10.022 Trip 2		0 to 255		RO	Txt	ND	NC	PT	PS
10.023 Trip 3		0 to 255		RO	Txt	ND	NC	PT	PS
10.024 Trip 4		0 to 255		RO	Txt	ND	NC	PT	PS
10.025 Trip 5 10.026 Trip 6		0 to 255		RO RO	Txt Txt	ND ND	NC NC	PT PT	PS PS
10.026 Trip 6 10.027 Trip 7		0 to 255 0 to 255		RO	Txt		NC	PT	PS
10.027 Trip 7		0 to 255 0 to 255		RO	Txt	ND ND	NC	PT	PS PS
10.029 Trip 9		0 to 255		RO	Txt	ND	NC	PT	PS
	stor Rated Power	0.000 to 99999.999 kW	See Table 9-14	RW	Num	טויו	INC	ГІ	US
	stor Thermal Time Constant	0.000 to 99999.999 kW	See Table 9-14 See Table 9-14	RW	Num				US
10.031 Braking Res		Off (0) or On (1)	Off (0)	RW	Bit		NC		00
10.032 External Hip		Off (0) or On (1)	Off (0)	RW	Bit		NC		
		None (0), 1 (1), 2 (2), 3 (3), 4 (4), 5 (5),	. ,				-110		
10.034 Number Of <i>A</i>	Auto-reset Attempts	Infinite (6)	None (0)	RW	Txt				US
10.035 Auto-reset D	•	1.0 to 600.0 s	1.0 s	RW	Num				US
	old Drive Healthy	Off (0) or On (1)	Off (0)	RW	Bit				US
10.037 Action On Tr	ip Detection	00000 to 11111	00000	RW	Bin				US
10.038 User Trip		0 to 255		RW	Num	ND	NC		
	stor Thermal Accumulator	0.0 to 100.0 %		RO	Num	ND	NC	PT	
10.040 Status Word		0 to 32767		RO	Num	ND	NC	PT	
10.041 Trip 0 Date 10.042 Trip 0 Time		00-00-00 to 31-12-99		RO	Date	ND	NC NC	PT PT	PS PS
10.042 Trip 0 Time 10.043 Trip 1 Date		00:00:00 to 23:59:59 00-00-00 to 31-12-99		RO RO	Time Date	ND ND	NC	PT	PS
10.043 Trip 1 Date		00:00:00 to 31-12-99 00:00:00 to 23:59:59		RO	Time	ND	NC	PT	PS
10.045 Trip 2 Date		00-00-00 to 23.39.39 00-00-00 to 31-12-99		RO	Date	ND	NC	PT	PS
10.046 Trip 2 Time		00:00:00 to 23:59:59		RO	Time				
10.047 Trip 3 Date		00-00-00 to 31-12-99		RO	Date	ND	NC	PT	
10.047 Trip 3 Time		00:00:00 to 31-12-33		RO	Time	ND	NC	PT	
10.049 Trip 4 Date		00-00-00 to 31-12-99		RO	Date	ND	NC	PT	PS
10.050 Trip 4 Time		00:00:00 to 23:59:59		RO	Time	ND	NC	PT	PS
10.051 Trip 5 Date		00-00-00 to 31-12-99		RO	Date	ND	NC	PT	PS
10.052 Trip 5 Time		00:00:00 to 23:59:59		RO	Time	ND		PT	PS
10.053 Trip 6 Date		00-00-00 to 31-12-99		RO	Date	ND	NC	PT	PS
10.054 Trip 6 Time		00:00:00 to 23:59:59		RO	Time	ND	NC	PT	PS
10.055 Trip 7 Date		00-00-00 to 31-12-99		RO	Date	ND	NC	PT	PS
10.056 Trip 7 Time		00:00:00 to 23:59:59		RO	Time	ND	NC	PT	PS
10.057 Trip 8 Date		00-00-00 to 31-12-99		RO	Date	ND	NC	PT	PS
10.058 Trip 8 Time		00:00:00 to 23:59:59		RO	Time	ND	NC	PT	PS
10.059 Trip 9 Date		00-00-00 to 31-12-99		RO	Date	ND	NC	PT	PS
10.060 Trip 9 Time		00:00:00 to 23:59:59		RO	Time	ND	NC	PT	PS
10.061 Braking Res	stor Resistance	0.00 to 10000.00 Ω	See Table 9-14	RW	Num				US
10.063 Local Keypa	d Battery Low	Off (0) or On (1)		RO	Bit	ND	NC	PT	
							NO	PT	
10.064 Remote Key	pad Battery Low	Off (0) or On (1)		RO	Bit	ND	NC	ГΙ	

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
imormation		iiiioiiiialioii	acoign	motanation	motanation	Started			uutu	Sizirig		inionnation

	Parameter	Range	Default			Туре	Э		
10.068	Hold Drive Healthy on Under Voltage	Off (0) or On (1)	Off (0)	RW	Bit				US
10.069	Additional Status Bits	0 to 1023		RO	Num	ND	NC	PT	
10.070	Trip 0 Sub-trip Number	0 to 65535		RO	Num	ND	NC	PT	PS
10.071	Trip 1 Sub-trip Number	0 to 65535		RO	Num	ND	NC	PT	PS
10.072	Trip 2 Sub-trip Number	0 to 65535		RO	Num	ND	NC	PT	PS
10.073	Trip 3 Sub-trip Number	0 to 65535		RO	Num	ND	NC	PT	PS
10.074	Trip 4 Sub-trip Number	0 to 65535		RO	Num	ND	NC	PT	PS
10.075	Trip 5 Sub-trip Number	0 to 65535		RO	Num	ND	NC	PT	PS
10.076	Trip 6 Sub-trip Number	0 to 65535		RO	Num	ND	NC	PT	PS
10.077	Trip 7 Sub-trip Number	0 to 65535		RO	Num	ND	NC	PT	PS
10.078	Trip 8 Sub-trip Number	0 to 65535		RO	Num	ND	NC	PT	PS
10.079	Trip 9 Sub-trip Number	0 to 65535		RO	Num	ND	NC	PT	PS
10.081	Phase Loss	Off (0) or On (1)		RO	Bit	ND	NC	PT	
10.101	Drive Status	Inhibit (0), Ready (1), Stop (2), Scan (3), Run (4), Supply Loss (5), Deceleration (6), dc Injection (7), Position (8), Trip (9), Active (10), Off (11), Hand (12), Auto (13), Heat (14), Under Voltage (15)		RO	Txt	ND	NC	PT	
10.102	Trip Reset Source	0 to 1023		RO	Num	ND	NC	PT	PS
10.103	Trip Time Identifier	-2147483648 to 2147483647 ms		RO	Num	ND	NC	PT	\Box
10.104	Active Alarm	None (0), Brake Resistor (1), Motor Overload (2), Ind Overload (3), Drive Overload (4), Auto Tune (5), Limit Switch (6), Fire Mode (7), Low Load (8), Option Slot 1 (9), Option Slot 2 (10), Option Slot 3 (11), Option Slot 4 (12)		RO	Txt	ND	NC	PT	
10.106	Potential Drive Damage Conditions	0000 to 1111		RO	Bin	ND	NC	PT	PS

ſ	RW	Read / Write	RO	Read only	Num	Number parameter	Bit	Bit parameter	Txt	Text string	Bin	Binary parameter	FI	Filtered
I	ND	No default value	NC	Not copied	PT	Protected parameter	RA	Rating dependent	US	User save	PS	Power-down save	DE	Destination
I	ΙP	IP address	Mac	Mac address	Date	Date parameter	Time	Time parameter	SMP	Slot,menu,parameter	Chr	Character parameter	Ver	Version number

Table 9-14 Defaults for Pr 10.030, Pr 10.031 and Pr 10.061

Drive size	Pr 10.030	Pr 10.031	Pr 10.061
3	50 W	3.3 s	75 Ω
4 and 5	100 W	2.0 s	38 Ω
All other ratings and frame sizes	0.0	000	0.00

	10.0	01	Drive Hea	lthy						
RO) Bit					N	D	NC	PT	
Û	Off (0) or On (1)					ightharpoons				

Drive Healthy (10.001) indicates that the drive is not in the trip or the under voltage state if it is set to one. If Auto-reset Hold Drive Healthy (10.036) = 1 and auto-reset is being used, Drive Healthy (10.001) is not cleared until all auto-resets have been attempted and the next trip occurs. The LED on the front of the drive gives an indication of the drive state as shown in the table below.

Drive State	LED
Normal power and <i>Drive Healthy</i> (10.001) = 1	On continuously
Normal power and <i>Drive Healthy</i> (10.001) = 0	Flashing: 0.5 s on and 0.5 s off
Standby power state	Flashing: 0.5 s on and 7.5 s off

	10.0	02	Drive Acti	ive						
RO)	Bit				N	D	NC	PT	
Û	Off (0) or On (1)					$\hat{\Gamma}$				

If the drive inverter is active *Drive Active* (10.002) is set to one, otherwise it is zero.

	Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
--	--------------------	--------------	------------------------	---------------	----------------------------	----------------------------	-----------------	--------------	------------	-------------------	------------------	-------------	-------------------

	10.0	800	Rated Loa	ad Reache	d					
RO)	Bit				N	D	NC	PT	
Û	Off (0) or On (1)					ightharpoons				

In Regen mode Rated Load Reached (10.008) indicates that the real component of current is at or above the Rated Current (05.007). This condition is also detected when the modulus of Percentage Load (04.020) is greater or equal to 100.0 %.

	10.0	09	Current L	imit Active)					
RC	O Bit						D	NC	PT	
Û	Off (0) or On (1)					\Diamond				

Current Limit Active (10.009) is set to one if the current limit is active.

	10.0	10	Regenera	ting					
RO)	Bit			N	D	NC	PT	
Û			Off (0) or C	n (1)	\Diamond				

In Regen mode Regenerating (10.010) is set to one if power is being transferred from the Regen drive to the supply.

I		10.0	11	Braking I	GBT Active	9					
	RO)	Bit				N	D	NC	PT	
	Û			Off (0) or C	On (1)		$\hat{\Box}$				

Braking IGBT Active (10.011) is set to one if the braking IGBT is active. As the braking IGBT active periods may be short, each time the braking IGBT is switched on Braking IGBT Active (10.011) is set to one and remains at one for at least 0.5 s.

	10.0	12	Braking R	esistor Al	arm					
RC)	Bit				N	D	NC	PT	
Û			Off (0) or C	n (1)		$\hat{\mathbb{T}}$				

Braking Resistor Alarm (10.012) is set when the braking IGBT is active and Braking Resistor Thermal Accumulator (10.039) is greater than 75.0 %. As the braking IGBT on periods may be short Braking Resistor Alarm (10.012) is always held on for at least 0.5 s.

	10.0	15	Supply Lo	oss					
R	C	Bit			N	D	NC	PT	
Û			Off (0) or C	On (1)	$\hat{\Gamma}$				

In Regen mode Supply Loss (10.015) always indicates that the Regen drive is in the supply loss state. See Regen Supply Loss AC Level (03.023) for details.

	10.0	16	Under Vol	tage Activ	'e					
R	0	Bit				N	D	NC	PT	
Û			Off (0) or C	On (1)		$\hat{\Box}$				

Under Voltage Active (10.016) indicates that the drive is in the under voltage state. See Standard Under Voltage Threshold (06.065) for more details.

	10.0	17	Inductor (Overload A	Alarm					
R	C	Bit				N	D	NC	PT	
Û			Off (0) or C	n (1)		$\hat{\Box}$				

Motor Overload Alarm (10.017) is set if the drive output current is higher than the level that will eventually cause an Motor Too Hot trip and the Inductor Protection Accumulator (04.019) is higher than 75.0 %. See Inductor Thermal Time Constant (04.015) for more details.

	10.0	18	Drive Ove	r-tempera	ture Alarm					
RO)	Bit				N	D	NC	PT	
Û			Off (0) or C	$\hat{\Gamma}$						

Drive Over-temperature Alarm (10.018) is set if Percentage Of Drive Thermal Trip Level (07.036) is greater than 90 %.

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
--------------------	--------------	---------------------	---------------	----------------------------	----------------------------	--------------------	--------------	------------	----------------	------------------	-------------	-------------------

	10.0	19	Drive War	ning					
RC)	Bit			N	D	NC	PT	
Û			Off (0) or C	On (1)	\Rightarrow				

Drive Warning (10.019) is set to one if any of the drive warnings is active, and is defined as:

Drive Warning (10.019) = Braking Resistor Alarm (10.012) OR Motor Overload Alarm (10.017) OR Drive Over-temperature Alarm (10.018).

	10.020	Trip 0						
	10.021	Trip 1						
	10.022	Trip 2						
	10.023	Trip 3						
	10.024	Trip 4						
	10.025	Trip 5						
	10.026	Trip 6						
	10.027	Trip 7						
	10.028	Trip 8						
	10.029	Trip 9						
R	O Txt			NI)	NC	PT	
Û		0 to 255		\Rightarrow				

Trip 0 (10.020) to Trip 9 (10.029) store the most recent 10 trips that have occurred where Trip 0 (10.020) is the most recent and Trip 9 (10.029) is the oldest. When a new trip occurs it is written to Trip 0 (10.020) and all the other trips move down the log, with oldest being lost. The date and time when each trip occurs are also stored in the date and time log, i.e. Trip 0 Date (10.041) to Trip 9 Time (10.060). The date and time are taken from Date (06.016) and Time (06.017). Some trips have sub-trip numbers which give more detail about the reason for the trip. If a trip has a sub-trip number its value is stored in the sub-trip log, i.e. Trip 0 Sub-trip Number (10.070) to Trip 9 Sub-trip Number (10.079). If the trip does not have a sub-trip number then zero is stored in the sub-trip log.

Trip categories and priorities

Trips are grouped into the categories given in the table below. A trip can only occur when the drive is not tripped, or if it is already tripped and the new trip has a higher priority than the active trip (i.e. lower priority number). Unless otherwise stated a trip cannot be reset until 1.0 s after it has been initiated.

Priority	Category	Trips	Comments
1	Internal faults	HF01 – HF20	These are fatal problems that cannot be reset. All drive features are inactive after any of these trips occur. If a basic keypad is fitted it will show the trip, but the keypad will not function. These trips are not stored in the trip log.
1	Stored HF trip	Stored HF	This trip cannot be cleared unless 1299 is entered into <i>Pr mm.000</i> (mm.000) and a reset is initiated.
2	Non-resettable trips	Trip numbers 218 to 247, Slot1 HF, Slot2 HF, Slot3 HF or Slot4 HF	These trips cannot be reset.
3	Volatile memory failure	EEPROM Fail	This can only be reset if <i>Parameter mm.000</i> (mm.000) is set to 1233 or 1244, or if <i>Load Defaults</i> (11.043) is set to a non-zero value.
4	Internal 24V power supply	PSU 24V	
5	Non-volatile media trips	Trip numbers 174, 175 and 177 to 188	These trips are priority 6 during power-up.
5	Position feedback interface power supply	Encoder 1	This trip can override Encoder 2 to Encoder 6 trips.
6	Trips with extended reset times	Ol ac, Ol Brake and Ol dc	These trips cannot be reset until 10 s after the trip was initiated.
6	Phase loss and DC link power circuit protection	Phase Loss and OHt dc bus	The drive will attempt to stop the motor before tripping if a <i>Phase Loss</i> .000 trip occurs unless this feature has been disabled (see <i>Action On Trip Detection</i> (10.037). The drive will always attempt to stop the motor before tripping if an <i>OHt dc bus</i> occurs.
6	Standard trips	All other trips	

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
--------------------	--------------	---------------------	---------------	----------------------------	----------------------------	--------------------	--------------	------------	-------------------	------------------	-------------	-------------------

Similar trips that can be initiated by the control system or the power system

Trips shown in the table below can be generated either from the drive control system or from the power system. The sub-trip number which is in the form xxyzz is used to identify the source of the trip. The digits xx are 00 for a trip generated by the control system or the number of a power module if generated by the power system. If the drive is not a multi-power module drive then xx will always have a value of 1 the trip is related to the power system. The y digit is used to identify the location of a trip which is generated by a rectifier module connected to a power module. Where the y digit is relevant it will have a value of 1 or more, otherwise it will be 0. The zz digits give the reason for the trip and are defined in each trip description.

Over Volts	OHt dc bus
OI ac	Phase Loss
OI Brake	Power Comms
PSU	OI Snubber
OHt Inverter	Reserved 102
OHt Power	Temp Feedback
OHt Control	Power Data

	10.030 Braking Resistor Rated Power									
RV	N	Num								US
Û	0.000 to 99999.999					ightharpoons		See Table	9-14	

A thermal protection system is provided for the braking resistor. If Braking Resistor Rated Power (10.030) is set to zero this protection system is disabled and the Braking Resistor Thermal Accumulator (10.039) is held at zero. If braking resistor thermal protection is required the Braking Resistor Rated Power (10.030), Braking Resistor Thermal Time Constant (10.031) and Braking Resistor Resistance (10.061) should be set up with the braking resistor parameters. The thermal time constant of the resistor can be calculated from the single pulse energy rating (E) and continuous power rating (P) of the resistor.

Braking Resistor Thermal Time Constant (10.031) = t = E / P

The braking resistor is protected with a single time constant model as shown overleaf.

Figure 9-16 Braking resistor protection system

The drive monitors the power flowing into the braking resistor and updates the Braking Resistor Thermal Accumulator (10.039). If bit 1 of Action On Trip Detection (10.037) = 0 and the accumulator reaches 100 % an Brake R Too Hot trip is initiated. If bit 1 of Action On Trip Detection (10.037) = 1 and the accumulator reaches 100 % the braking IGBT is disabled until the accumulator falls below 95.0 %.

	10.0	31	Braking R	Resistor Th	ermal Tim	e Cor	ıstanı	t			
RV	N	Num									US
Û	0.000 to 1500.000					\Rightarrow			See Table	9-14	

	10.0	32	External 1	rip						
R\	W	Bit					NC			
Û	Off (0) or On (1)					\Diamond		Off (0))	

If External Trip (10.032) is set to one an External Trip.003 is initiated. A digital input can be routed to External Trip (10.032) to provide an external trip input function.

	10.0	10.033 Drive Reset								
RV	N	Bit					NC			
Û		Off (0) or On (1)				$\hat{\Box}$		Off (0))	

A 0 to 1 transition in Drive Reset (10.033) causes a drive reset. If a drive reset terminal is required a digital input should be routed to Drive Reset (10.033).

	Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
--	--------------------	--------------	------------------------	---------------	----------------------------	----------------------------	-----------------	--------------	------------	----------------	------------------	-------------	-------------------

	10.034 Number Of Auto-reset Atte					ts			
RV	Ν	Txt							US
\$			0 to 6			\Rightarrow		0	

Value	Text
0	None
1	1
2	2
3	3
4	4
5	5
6	Infinite

If Number Of Auto-reset Attempts (10.034) = 0 then no auto-reset attempts are made. Any other value will cause the drive to automatically reset following a trip for the number of times programmed after a delay defined by Auto-reset Delay (10.035) subject to the minimum reset time allowed for the type of trip. Note that for some trips the minimum is 10s. The auto-reset count is only incremented when the trip is the same as the previous trip otherwise it is reset to 0. When the auto-reset count reaches the programmed value, any further trip of the same value will not cause an auto-reset. If the number of auto-reset attempts defined by Number Of Auto-reset Attempts (10.034) has not been reached and there has been no trip for 5 minutes then the auto-reset count is cleared. Auto reset will not occur after any trips with priority levels 1, 2 or 3 as defined in Trip 0 (10.020). When a manual reset occurs the auto-reset counter is reset to zero.

If Number Of Auto-reset Attempts (10.034) = 6 the auto-reset counter is held at zero, and so there is no limit on the number of auto-reset attempts.

	10.035 Auto-reset Delay								
RV	N	Num							US
Û			1.0 to 600).0 s		ightharpoons		1.0 s	

		10.036 Auto-reset Hold Drive Health									
	RV	٧	Bit								US
Į	Ĵ			Off (0) or C	n (1)		\Rightarrow		Off (0))	

If Auto-reset Hold Drive Healthy (10.036) = 0 then Drive Healthy (10.001) is cleared every time the drive trips regardless of any auto-reset that may occur. If Auto-reset Hold Drive Healthy (10.036) = 1 then Drive Healthy (10.001) is not cleared on a trip if any further auto-reset attempts are possible. Note that if the under voltage state becomes active Drive Healthy (10.001) will be set to zero unless Hold Drive Healthy on Under Voltage (10.068) = 1.

	10.0	37	Action On	Trip Dete	ction					
R	W	Bin								US
Û	0	(Display: 0	00000) to 3	1 (Display:	11111)	ightharpoons	() (Display: (00000)	

The bits in Action On Trip Detection (10.037) are defined as follows:

Bit 0: Stop on defined non-important trips

If bit 0 is set to one the drive will attempt to stop before tripping if any of the following trip conditions are detected: I/O Overload, An Input 1 Loss, An Input 2 Loss or Keypad Mode. (This bit has no effect in Regen mode.)

Bit 1: Disable braking resistor overload detection

See Braking Resistor Rated Power (10.030).

Bit 2: Disable phase loss stop

Normally the drive will stop when the input phase loss condition is detected. If this bit is set to 1 the drive will continue to run and will only trip when the drive is brought to a stop by the user. (This bit has no effect in Regen mode.)

Bit 3: Not Used

Bit 4: Disable parameter freeze on trip

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
IIIIOIIIIalioii		IIIIOIIIIalioii	uesign	IIIStaliation	IIIStaliation	Starteu			uala	Siziriy	=	IIIIOIIIIalioii

If this bit is 0 then the parameters listed below are frozen on trip until the trip is cleared. If this bit is 1 then this feature is disabled.

Parameter number	Parameter name
03.001	Reactive Power
04.001	Current Magnitude
04.002	Active Current
04.017	Reactive Current
05.001	Output Frequency
05.002	Output Voltage
05.003	Output Power
05.005	D.c. Bus Voltage
07.001	Analog Input 1
07.002	Analog Input 2
07.003	Analog Input 3

	10.0	38	User Trip							
RV	RW Num					N	D	NC		US
Û	0 to 255					\Diamond				

When a value other than zero is written to the *User Trip* (10.038) the actions described in the following table are performed. The drive immediately writes the value back to zero. If the value is not included in the table, then the action is the same as if the trip with the same number (with sub-trip zero) occurred provided the drive is not already tripped.

Action	User Trip (10.038)
No action	Numbers corresponding to priority 1, 2 or 3 trips.
Drive reset	100
Clear trip logs (parameters 10.020 to 10.029, 10.041 to 10.060 and 10.070 to 10.079)	255

	10.0	39	Braking Resistor Thermal Accumulator									
RO	C	Num				N	D	NC	PT			
Û	0.0 to			.0 %		ightharpoons						

	10.0	40	Status Wo	ord	-				
RO	С	Num			N	D	NC	PT	
Û		\Diamond							

The bits in Status Word (10.040) mirror the status bit parameters as shown below. Where the parameters do not exist in any mode the bit remains at zero.

Bit	Status parameter
0	Drive Healthy (10.001)
1	Drive Active (10.002)
2	Zero Speed (10.003)
3	Running At Or Below Minimum Speed (10.004)
4	Below Set Speed (10.005)
5	At Speed (10.006)
6	Above Set Speed (10.007)
7	Rated Load Reached (10.008)
8	Current Limit Active (10.009)
9	Regenerating (10.010)
10	Braking IGBT Active (10.011)
11	Braking Resistor Alarm (10.012)
12	Reverse Direction Commanded (10.013)
13	Reverse Direction Running (10.014)
14	Supply Loss (10.015)

Safety		Product	System	Mechanical	Flee	trical	Getting			Technical
information	Introduction	Information	design	Installation		llation	started	Optimization	Parameters	data
10.0	44	Trip 0 Date								
RO	Date	Trip o Date			N	D	NC	PT		PS
	0 (D	isplay: 00-00			⇒	_				. 0
₩.	31129	9 (Display: 3	31-12-99)		7					
10.0	42	Trip 0 Time								
RO	Time	TIP O TIME			N	D	NC	PT		PS
	0 (D	isplay: 00:00			\Rightarrow					
₩.	23595	9 (Display: 2	23:59:59)		,					
10.0	43	Trip 1 Date								
RO	Date	p . Date			N	D	NC	PT		PS
\$		isplay: 00-00			\Rightarrow					
<	31129	9 (Display: 3	31-12-99)		ŕ					
10.0)44	Trip 1 Time								
RO	Time				N	D	NC	PT		PS
\$		isplay: 00:00			\Rightarrow					
<u>`</u>	23595	59 (Display: 2	23:59:59)		·					
10.0	45	Trip 2 Date								
RO	Date	· I			N	D	NC	PT		PS
ŷ		isplay: 00-00			\Rightarrow					
Ť	31129	9 (Display: 3	31-12-99)							
10.0)46	Trip 2 Time								
RO	Time				N	D	NC	PT		PS
û		isplay: 00:00 59 (Display: 2			\Diamond					
	20000	o (Display. 2	20.00.00)							
10.0)47	Trip 3 Date								
RO	Date				N	D	NC	PT		PS
\$		isplay: 00-00 9 (Display: 3			\Rightarrow					
		(= := - :								
10.0		Trip 3 Time								
RO	Time	Samles :: 00:00	2.00\ 4=		N	D	NC	PT		PS
\$		isplay: 00:00 59 (Display: 2			\Rightarrow					
10.0		Trip 4 Date					No			DC.
RO	Date 0 (D	isplay: 00-00)-()()) to		N	ט	NC	PT		PS
\$		9 (Display: 3			\Rightarrow					
		-								
10.0 RO	Time	Trip 4 Time		1	N	ר ח	NC	PT	<u> </u>	PS
		isplay: 00:00	0:00) to			J	INC	FI		rσ
Û		59 (Display: 2			\Rightarrow					
40.0		Trin E Data								
10.0 RO	Date	Trip 5 Date			N	D I	NC	l PT		PS
		isplay: 00-00	0-00) to		⇒		1,0			. 0
\$		9 (Display: 3			7					

Component sizing

UL Information

Diagnostics

10.052	Safety information	Introduction	Product Information	System design	Mechanical Installation		ctrical Illation	Getting started	Optimization	Parameters	Technical data
RO Time			•				'			•	
\$ 0 (Display: 00:00:00) to 235959 (Display: 23:59:59)			Trip 5 Time	1			D	110	D.T.	T	DO
10.053			ienlay: 00:0	0:00) to		N	D	NC	РΙ		PS
RO Date ND NC PT PS	\$					\Rightarrow					
RO Date ND NC PT PS											
(1) (Display: 00-00-00) to 311299 (Display: 31-12-99) ⇒ 10.054 Trip 6 Time RO Time ND NC PT PS (10.054 Trip 6 Time ND NC PT PS (10.055 Trip 7 Date ND NC PT PS (10.055 Trip 7 Date ND NC PT PS (10.055 Trip 7 Time ND NC PT PS (10.056 Trip 7 Time ND NC PT PS (10.057 Trip 8 Date ND NC PT PS (10.057 Trip 8 Date ND NC PT PS (10.057 Trip 8 Date ND NC PT PS (10.058 Trip 8 Time ND NC PT PS (10.058 Trip 8 Time ND NC PT PS (10.059 Trip 9 Date ND NC PT PS (10.059 Trip 9 Time ND NC PT PS (10.050 Trip 9 Time ND NC			Trip 6 Date		· ·		_	NO	D.T.	į.	50
311299 (Display: 31-12-99)	1		oisplay: 00-0	0-00) to			D	NC	РΙ		P5
RO Time	Û.					\Rightarrow					
RO Time											
(1) (1) <td></td> <td></td> <td>Trip 6 Time</td> <td></td> <td>İ</td> <td>N.</td> <td>D </td> <td>NC</td> <td>DT</td> <td></td> <td>DC</td>			Trip 6 Time		İ	N.	D	NC	DT		DC
10.055	1		oisplay: 00:0	0:00) to			D	NC	PI		Põ
RO Date ND NC PT PS	Û.					\Rightarrow					
RO Date ND NC PT PS											
(1) 0 (Display: 00-00-00) to 311299 (Display: 31-12-99) □ 10.056 Trip 7 Time RO Time ND NC PT PS (1) 0 (Display: 00:00:00) to 235959 (Display: 23:59:59) □ □ ND NC PT PS (1) 0 (Display: 00-00-00) to 311299 (Display: 31-12-99) □ □ ND NC PT PS (1) 0 (Display: 00:00:00) to 235959 (Display: 23:59:59) □ □ □ ND NC PT PS (1) 0 (Display: 00:00:00) to 311299 (Display: 31-12-99) □ □ □ ND NC PT PS (1) 0 (Display: 00:00:00) to 311299 (Display: 31-12-99) □ □ □ ND NC PT PS (1) 0 (Display: 00:00:00:00 to 235959 (Display: 23:59:59) □ □ ND NC PT PS (1) 0 (Display: 00:00:00:00 to 235959 (Display: 23:59:59) □ □ □ ND NC PT PS (1) 0 (Display: 23:59:59) □ □ □ □ <t< td=""><td></td><td></td><td>Trip 7 Date</td><td></td><td>ı</td><td>h 1</td><td>D 1</td><td>NO</td><td>DT</td><td>T</td><td>De</td></t<>			Trip 7 Date		ı	h 1	D 1	NO	DT	T	De
10.056			oisplay: 00-0	0-00) to			D	NC	PI		P3
RO Time ND NC PT PS	î					\Rightarrow					
RO Time ND NC PT PS											
			Trip 7 Time			N.	D	NC	DT		DC
10.057			isplav: 00:0	0:00) to			D .	NC	FI		FO
RO Date ND NC PT PS	î					\Rightarrow					
RO Date ND NC PT PS	40.0	\	T-1 0 D-4-								
(1) 0 (Display: 00-00-00) to 311299 (Display: 31-12-99) □ 10.058 Trip 8 Time RO Time ND NC PT PS (1) 0 (Display: 00:00:00) to 235959 (Display: 23:59:59) □ <td< td=""><td></td><td></td><td>Trip 8 Date</td><td></td><td></td><td>N</td><td>D I</td><td>NC</td><td>DT</td><td></td><td>DS</td></td<>			Trip 8 Date			N	D I	NC	DT		DS
10.058			oisplay: 00-0	0-00) to				NO			10
RO Time ND NC PT PS	₩.	31129	9 (Display: 3	31-12-99)		∽					
RO Time ND NC PT PS	40.0	150	Trin 9 Time								
(1) (Display: 00:00:00) to 235959 (Display: 23:59:59) ⇒ 10.059 Trip 9 Date RO Date ND NC PT PS (1) (Display: 00-00-00) to 311299 (Display: 31-12-99) ⇒ ⇒ → <			mp o mine			N	D.	NC	PT		PS
10.059			oisplay: 00:00	0:00) to							
RO Date ND NC PT PS ⊕ 0 (Display: 00-00-00) to 311299 (Display: 31-12-99) ⇒ □ 10.060 ☐ Trip 9 Time ☐ ND NC PT PS ☐ ND NC PT PS ☐ O (Display: 00:00:00) to 235959 (Display: 23:59:59) ☐ Display: 00:00:00 ☐ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	₩.	23595	59 (Display: 2	23:59:59)		~					
RO Date ND NC PT PS ⊕ 0 (Display: 00-00-00) to 311299 (Display: 31-12-99) □ □ 10.060 ☐ Trip 9 Time ☐ ND NC PT PS ☐ ND NC PT PS ☐ O (Display: 00:00:00) to 235959 (Display: 23:59:59) ☐ Display: 23:59:59) ☐ □ ☐ Display: 23:59:59) ☐ □	_ 10.0	159	Trin 9 Date								
10.060 Trip 9 Time RO Time ND NC PT PS			mp o Bate			N	D	NC	PT		PS
10.060 Trip 9 Time RO Time ND NC PT PS	ſΥ					\Rightarrow					
RO Time ND NC PT PS	*	31129	99 (Display: 3	31-12-99)		•					
RO Time ND NC PT PS	_ 10.0	160	Trip 9 Time								
235959 (Display: 23:59:59) 10.061 Braking Resistor Resistance						N	D	NC	PT		PS
10.061 Braking Resistor Resistance	î					\Rightarrow					
		23595	งษ (Display: ใ	23:59:59)							
	10.0	61	Braking Re	sistor Re	sistance						
											US
\updownarrow 0.00 to 10000.00 Ω \Rightarrow See Table 9-14	≎	0.	00 to 10000	.00 Ω		\Rightarrow			See Table	9-14	
	<u> </u>										
10.063 Local Keypad Battery Low		63	Local Keyp	ad Batte	ry Low						
RO Bit ND NC PT						N	D	NC	PT		
	Û	(Off (0) or On	1 (1)		\Rightarrow					

Local Keypad Battery Low (10.063) is set to one when a keypad is fitted to the front of the drive with an internal real-time clock and the battery is not fitted or the voltage is below the minimum threshold.

Component sizing

UL Information

Diagnostics

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
--------------------	--------------	---------------------	---------------	----------------------------	----------------------------	-----------------	--------------	------------	-------------------	------------------	-------------	-------------------

İ		10.064 Remote Keypad Battery Low									
	RC) Bit					N	D	NC	PT	
	Û	Off (0) or On (1)					ightharpoons				

Remote Keypad Battery Low (10.064) is set to one when a keypad is connected to the drive user comms port with an internal real-time clock and the battery is not fitted or the voltage is below the minimum threshold.

	10.0	67	Fire Mode Active										
RO	RO Bit					N	D	NC	PT				
$\hat{\mathbb{Q}}$	Off (0) or On (1)					ightharpoons							

	10.	068	Hold Drive Healthy on Under Voltage									
	RW	Bit									US	
Û		Off (0) or On (1)							Off (0)		

Hold Drive Healthy on Under Voltage (10.068) can be used to hold the drive healthy active (Drive Healthy (10.001) = 1 and not flash the status LED on the front of the drive) when the drive is in the under voltage state (Under Voltage Active (10.016) = 1).

If Hold Drive Healthy on Under Voltage (10.068) = 0 and Under Voltage Active (10.016) = 1, then Drive Healthy (10.001) will be set to 0 and the status LED on the front of the drive will flash.

If Hold Drive Healthy on Under Voltage (10.068) = 1, Under Voltage Active (10.016) = 1 and the drive is not tripped (i.e. Drive Status (10.101) does not equal 9), then Drive Healthy (10.001) will be set to 1 and the status LED on the front of the drive will not flash.

If the drive is tripped then *Drive Healthy* (10.001) will be set to 0 and the status LED will flash independent of what Hold Drive Healthy on *Under Voltage* (10.068) is set to.

	10.0	169	Additional Status Bits									
R	RO Num					N	D	NC	PT			
Û	0 to 1023			23		\Rightarrow						

The bits in Additional Status Bits (10.069) mirror the status bits parameters as shown below. Where the parameters do not exist in any mode the bit remains at zero.

Bit	Status parameter
0	Under Voltage Active (10.016)
1	Motor Overload Alarm (10.017) or Inductor Overload Alarm (10.017)
2	Drive Over-temperature Alarm (10.018)
3	Drive Warning (10.019)
4	Low Load Detected Alarm (10.062)
5	Local Keypad Battery Low (10.063)
6	Remote Keypad Battery Low (10.064)
8	Limit Switch Active (10.066)
9	Fire Mode Active (10.067)

\$		0 to 65535
R	O Nur	ND NC PT PS
	10.079	Trip 9 Sub-trip Number
	10.078	Trip 8 Sub-trip Number
	10.077	Trip 7 Sub-trip Number
	10.076	Trip 6 Sub-trip Number
	10.075	Trip 5 Sub-trip Number
	10.074	Trip 4 Sub-trip Number
	10.073	Trip 3 Sub-trip Number
	10.072	Trip 2 Sub-trip Number
	10.071	Trip 1 Sub-trip Number
	10.070	Trip 0 Sub-trip Number

	Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
--	--------------------	--------------	------------------------	---------------	----------------------------	----------------------------	-----------------	--------------	------------	-------------------	------------------	-------------	-------------------

		10.031 Phase Loss									
	RC)	Bit					D	NC	PT	
Ī	Û	Off (0) or On (1)				ightharpoons					

If a supply phase is disconnected, or two phases are shorted together, the negative phase sequence component of supply voltage (*Negative Phase Sequence Volts* (03.038)) increases significantly. *Phase Loss* (10.081) gives an indication of either of these conditions, or a high level of supply imbalance. If Harmonic Reduction Enable (03.021) > 0 then this parameter is set to one if *Negative Phase Sequence Volts* (03.038) > *Positive Phase Sequence Volts* (03.037) / 2 for more than 100 ms. It should be noted that *Phase Loss* (10.081) is only set when the Regen drive is active, so if the transient caused by an asymmetrical fault causes the system to trip then *Phase Loss* (10.081) is not set.

	10.1	101	Drive Stat	us						
R	RO Txt			N	D	NC	PT			
Û	0 to 15			$\hat{\Gamma}$						

Value	Text
0	Inhibit
1	Ready
2	Stop
3	Scan
4	Run
5	Supply Loss
6	Deceleration
7	dc Injection
8	Position
9	Trip
10	Active
11	Off
12	Hand
13	Auto
14	Heat
15	Under Voltage

Drive Status (10.101) shows the present status of the drive. The strings from this parameter are also used by the basic keypad to provide the status display text.

	10.1	02	Trip Rese	t Source						
RO	С	Num				N	D	NC	PT	PS
Û	0 to 1023					\Diamond				

The bits in *Trip Reset Source* (10.102) correspond to each of the trips in the trip log (i.e. bit 0 corresponds to trip 0, bit 1 corresponds to trip 1, etc.). When a trip occurs, bit 0 is set to one and the other bits corresponding to the trips already in the trip log are shifted left one bit. If the trip is reset then bit 0 is set back to zero, otherwise if a higher priority trip occurs bit 0 is shifted left by one bit. The result is that each of the bits in *Trip Reset Source* (10.102) show whether trips in the trip log were reset or moved up the trip log by a higher priority trip.

	10.1	03	Trip Time	Identifier						
RC	O Num					N	D	NC	PT	
Û	-2147483648 to 2147483647					$\hat{\Box}$				

When a trip occurs the time in milliseconds since the drive powered up is stored in *Trip Time Identifier* (10.103). The time rolls-over when it reaches 2³¹ - 1, but if the time is 0 a value of 1 is written. *Trip Time Identifier* (10.103) can be used to determine when a new trip has occurred as the value will change (unless there were exactly 2³² ms between trips) and will be non-zero.

	10.104 Active Alarm									
F	RO	Txt				N	D	NC	PT	
Û	0 to 12					\Box				

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
--------------------	--------------	---------------------	---------------	----------------------------	----------------------------	--------------------	--------------	------------	----------------	------------------	-------------	-------------------

Value	Text
0	None
1	Brake Resistor
2	Motor Overload
3	Ind Overload
4	Drive Overload
5	Auto Tune
6	Limit Switch
7	Fire Mode
8	Low Load
9	Option Slot 1
10	Option Slot 2
11	Option Slot 3
12	Option Slot 4

If there is no alarm then *Active Alarm* (10.104) = 0. If one alarm is active then *Active Alarm* (10.104) shows the value of the alarm. If more than one alarm is active then *Active Alarm* (10.104) shows the active alarm with the lowest value. The strings from this parameter are also used by the basic keypad to provide the status display text except for option slot warnings where the option module may supply the string.

	10.1	06	Potential	Drive Dam	age Condi	tions				
RO	RO Bin					N	D	NC	PT	PS
\$	0 (Display: 0000) to 15 (Display: 1111)				ightharpoons					

The bits in *Potential Drive Damage Conditions* (10.106) are set under the conditions shown in the table below to indicate that the user has put the drive in a condition that could potentially damage the drive. The bits in this parameter cannot be cleared by users.

Potential Drive Damage Conditions (10.106) bit	Condition
0	Fire mode has been active. See Fire Mode Reference (01.053).
1	Low Under Voltage Threshold (06.066) has been reduced from its default value.
2	High speed RFC-S mode has been used. See <i>Enable High Speed Mode</i> (05.022).
3	Not used.

Safety	Introduction	Product	System	Mechanical	Electrical	Getting	Ontimization	Daramatara	Technical	Component	Diagnostics	UL
information	Introduction	Information	design	Installation	Installation	started	Optimization	Parameters	data	sizing	Diagnostics	Information

9.11 Menu 11: General drive set-up

	Parameter	Range	Default			Тур	е		
11.001	Option Synchronisation Select	Not Active (0), Slot 1 (1), Slot 2 (2), Slot 3 (3), Slot 4 (4), Automatic (5)	Slot 4 (4)	RW	Txt				US
11.002	Option synchronisation Active	Not Active (0), Slot 1 (1), Slot 2 (2), Slot 3 (3), Slot 4 (4)		RO	Txt	ND	NC	PT	
11.018	Status Mode Parameter 1	0.000 to 59.999	0.000	RW	Num			PT	US
11.019	Status Mode Parameter 2	0.000 to 59.999	0.000	RW	Num			PT	US
11.020	Reset Serial Communications*	Off (0) or On (1)		RW	Bit	ND	NC		
11.021	Parameter 00.030 Scaling	0.000 to 10.000	1.000	RW	Num				US
11.022	Parameter Displayed At Power-up	0.000 to 0.080	0.011	RW	Num			PT	US
11.023	Serial Address*	1 to 247	1	RW	Num				US
11.024	Serial Mode*	8 2 NP (0), 8 1 NP (1), 8 1 EP (2), 8 1 OP (3), 8 2 NP M (4), 8 1 NP M (5), 8 1 EP M (6), 8 1 OP M (7), 7 2 NP (8), 7 1 NP (9), 7 1 EP (10), 7 1 OP (11), 7 2 NP M (12), 7 1 NP M (13), 7 1 EP M (14), 7 1 OP M (15)	8 2 NP (0)	RW	Txt				US
11.025	Serial Baud Rate*	300 (0), 600 (1), 1200 (2), 2400 (3), 4800 (4), 9600 (5), 19200 (6), 38400 (7), 57600 (8), 76800 (9), 115200 (10)	19200 (6)	RW	Txt				US
11.026	Minimum Comms Transmit Delay*	0 to 250 ms	2 ms	RW	Num				US
11.027	Silent Period*	0 to 250 ms	0 ms	RW	Num				US
11.028	Drive Derivative	0 to 255		RO	Num	ND	NC	PT	
11.029	Software Version	0 to 99999999		RO	Num	ND	NC	PT	
11.030	User Security Code	0 to 2147483647		RW	Num	ND	NC	PT	US
11.031	User Drive Mode	Open-loop (1), RFC-A (2), RFC-S (3), Regen (4)		RW	Txt	ND	NC	PT	
11.032	Maximum Heavy Duty Rating	0.000 to 99999.999 A		RO	Num	ND	NC	PT	
11.033	Drive Rated Voltage	200 V (0), 400 V (1), 575 V (2), 690 V (3)		RO	Txt	ND	NC	PT	
11.034	Software Sub-version	0 to 99		RO	Num	ND	NC	PT	
11.035	Number Of Power Modules Test	-1 to 20	-1	RW	Num				US
11.036	NV Media Card File Previously Loaded	0 to 999	0	RO	Num		NC	PT	Ш
11.037	NV Media Card File Number NV Media Card File Type	0 to 999 None (0), Open-loop (1), RFC-A (2), RFC-S (3), Regen (4), User Prog (5), Option App (6)	0	RW	Num	ND	NC	PT	
11.039	NV Media Card File Version	0 to 9999		RO	Num	ND	NC	PT	
11.040	NV Media Card File Checksum	-2147483648 to 2147483647		RO	Num	ND	NC	PT	
11.042	Parameter Cloning	None (0), Read (1), Program (2), Auto (3), Boot (4)	None (0)	RW	Txt		NC		US
11.043	Load Defaults	None (0), Standard (1), US (2)	None (0)	RW	Txt		NC		
11.044	User Security Status	Menu 0 (0), All Menus (1), Read-only Menu 0 (2), Read-only (3), Status Only (4), No Access (5)		RW	Txt	ND		PT	
	Select Motor 2 Parameters	Motor 1 (0), Motor 2 (1)	Motor 1 (0)	RW					US
11.046	Defaults Previously Loaded	0 to 2000		RO	Num	ND	NC	PT	US
11.047	Onboard User Program: Enable	Stop (0), Run (1)	Run (1)	RW	Txt				US
11.048	Onboard User Program: Status	-2147483648 to 2147483647		RO	Num	ND	NC	PT	igsquare
11.049	Onboard User Program: Programming Events Onboard User Program: Freewheeling Tasks Per Second	0 to 65535 0 to 65535		RO RO	Num	ND ND	NC NC	PT PT	\vdash
11.051	Onboard User Program: Clock Task Time Used	0.0 to 100.0 %		RO	Num	ND	NC	PT	\vdash
11.051	Serial Number LS	000000000 to 99999999		RO	Num	ND	NC	PT	\vdash
11.052	Serial Number MS	0 to 99999999		RO	Num	ND	NC	PT	╁
11.054	Drive Date Code	0 to 65535		RO	Num	ND	NC	PT	\vdash
11.055	Onboard User Program: Clock Task Scheduled Interval	0 to 262140 ms		RO	Num	ND	NC	PT	\vdash
11.056	Option Slot Identifiers	1234 (0), 1243 (1), 1324 (2), 1342 (3), 1423 (4), 1432 (5), 4123 (6), 3124 (7), 4132 (8), 2134 (9), 3142 (10), 2143 (11), 3412 (12), 4312 (13), 2413 (14), 4213 (15), 2314 (16), 3214 (17), 2341 (18), 2431 (19), 3241 (20), 3421 (21), 4231 (22), 4321 (23)	1234 (0)	RW	Txt			PT	
11.060	Maximum Rated Current	0.000 to 99999.999 A		RO	Num	ND		PT	
11.061	Full Scale Current Kc	0.000 to 99999.999 A		RO	Num	ND	NC	PT	
11.062	Power Board Software Version Number	0.00 to 99.99		RO	Num	ND	NC	PT	
11.063	Product Type	0 to 255		RO	Num	ND	NC	PT	

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
--------------------	--------------	------------------------	---------------	----------------------------	----------------------------	--------------------	--------------	------------	-------------------	------------------	-------------	-------------------

	Parameter	Range	Default			Тур	е		
11.064	Product Identifier Characters	1295396912 to 2147483647		RO	Num	ND	NC	PT	
11.065	Drive Rating And Configuration	00000000 to 99999999		RO	Num	ND	NC	PT	
11.066	Power Stage Identifier	0 to 255		RO	Num	ND	NC	PT	
11.067	Control Board Identifier	0.000 to 65.535		RO	Num	ND	NC	PT	
11.068	Internal I/O Identifier	0 to 255		RO	Num	ND	NC	PT	
11.069	Position Feedback Interface Identifier	0 to 255		RO	Num	ND	NC	PT	
11.070	Core Parameter Database Version	0.00 to 99.99		RO	Num	ND	NC	PT	
11.071	Number Of Power Modules Detected	0 to 20		RO	Num	ND	NC	PT	US
11.072	NV Media Card Create Special File	0 to 1	0	RW	Num		NC		
11.073	NV Media Card Type	None (0), SMART Card (1), SD Card (2)		RO	Txt	ND	NC	PT	
11.075	NV Media Card Read-only Flag	Off (0) or On (1)		RO	Bit	ND	NC	PT	
11.076	NV Media Card Warning Suppression Flag	Off (0) or On (1)		RO	Bit	ND	NC	PT	
11.077	NV Media Card File Required Version	0 to 9999		RW	Num	ND	NC	PT	
11.079	Drive Name Characters 1-4	-2147483648 to 2147483647	0	RW	Num			PT	US
11.080	Drive Name Characters 5-8	-2147483648 to 2147483647	0	RW	Num			PT	US
11.081	Drive Name Characters 9-12	-2147483648 to 2147483647	0	RW	Num			PT	US
11.082	Drive Name Characters 13-16	-2147483648 to 2147483647	0	RW	Num			PT	US
11.084	Drive Mode	Open-loop (1), RFC-A (2), RFC-S (3), Regen (4)		RO	Txt	ND	NC	PT	US
11.085	Security Status	None (0), Read-only (1), Status-only (2), No Access (3)		RO	Txt	ND	NC	PT	PS
11.086	Menu Access Status	Menu 0 (0), All Menus (1)		RO	Txt	ND	NC	PT	PS
11.090	Keypad Port Serial Address	1 to 16	1	RW	Num				US
11.091	Additional Identifier Characters 1	-2147483648 to 2147483647		RO	Num	ND	NC	PT	
11.092	Additional Identifier Characters 2	-2147483648 to 2147483647		RO	Num	ND	NC	PT	
11.093	Additional Identifier Characters 3	-2147483648 to 2147483647		RO	Num	ND	NC	PT	
11.095	Number Of Rectifiers Detected	0 to 9		RO	Num	ND	NC	PT	
11.096	Number Of Rectifiers Expected	0 to 9	0	RW	Num				US

^{*} Not available on Unidrive M700.

RW	Read / Write	RO	Read only	Num	Number parameter	Bit	Bit parameter	Txt	Text string	Bin	Binary parameter	FI	Filtered
ND	No default value	NC	Not copied	PT	Protected parameter	RA	Rating dependent	US	User save	PS	Power-down save	DE	Destination

I		11.0	01	Option Sy	nchronisa	ation Selec	t				
I	RV	٧	Txt								US
ĺ	Û	Not	Active (0), Slot	Slot 1 (1), 3 4 (4), Auto		Slot 3 (3),	\Rightarrow		Slot 4 (4)	

Option Synchronisation Select (11.001) is used to select and enable timing synchronisation between the communications system associated with an option module fitted to the drive and the drive control system. If "Not Active" is selected then the drive control system operates using it's own processor crystal for control sample timing. If one of the option modules is selected and is making a request to provide synchronisation then the drive control sample timing will be synchronised to the communication system. Option synchronisation Active (11.002) shows the synchronisation source, where "Not Active" indicates that the drive is providing the timing for the control system. Any other value indicates if an option module is providing synchronisation. If required the synchronisation source can be selected automatically by setting Option Synchronisation Select (11.001) to "Automatic". In this case the option module in the lowest numbered slot that is making a request to provide synchronisation will be selected.

	11.0	002	Option sy	nchronisa	tion Active)				
	RO	Txt				N	D	NC	PT	US
Û	Not	t Active (0),	Slot 1 (1), Slot 4 (Slot 3 (3),	\Diamond				

See Option Synchronisation Select (11.001).

	11.0	18	Status Mo	de Param	eter 1				
RV	Ν	Num						PT	US
\$			0.000 to 59	9.999		ightharpoons		0.000	

See Parameter Displayed At Power-up (11.022).

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
--------------------	--------------	---------------------	---------------	----------------------------	----------------------------	--------------------	--------------	------------	----------------	------------------	-------------	-------------------

	11.0	19	Status Mo	de Param	eter 2				
RV	N	Num						PT	US
Û			0.000 to 59	9.999		\Rightarrow		0.000	

See Parameter Displayed At Power-up (11.022).

	11.0	20	Reset Ser	ial Comm	unications					
RV	W Bit						D	NC		
Û			Off (0) or C	On (1)		ightharpoons				

When Serial Address (11.023), Serial Mode (11.024), Serial Baud Rate (11.025), Minimum Comms Transmit Delay (11.026) or Silent Period (11.027) are modified the changes do not have an immediate effect on the serial communications system. The new values are used after the next power-up or if Reset Serial Communications (11.020) is set to one. Reset Serial Communications (11.020) is automatically cleared to zero after the communications system is updated.

	11.0)21	Paramete	r 00.030 S	caling					
RV	N	Num								US
Û	0.000 to 10.000					ightharpoons		1.000	1	

Parameter 00.030 Scaling (11.021) defines the scaling applied to parameter 00.030 when it is displayed on a basic keypad. The scaling is only applied in the status and view modes. If the parameter is edited via the keypad it reverts to its un-scaled value during editing.

	11.0	22	Paramete	r Displaye	d At Powe	r-up			
R۱	W Num							PT	US
Û	0.000 to 0.080					\Diamond		0.011	

If Status Mode Parameter 1 (11.018) and Status Mode Parameter 2 (11.019) are set to zero, then Parameter Displayed At Power-up (11.022) defines which Menu 0 parameter is initially displayed at power-up. If Status Mode Parameter 1 (11.018) or Status Mode Parameter 2 (11.019) are set to valid parameter numbers, then Parameter Displayed At Power-up (11.022) defines the active parameter at power-up, i.e. the parameter first displayed when going in to parameter view mode on the keypad.

If Status Mode Parameter 1 (11.018) and Status Mode Parameter 2 (11.019) define the parameter values to be display on the upper and lower rows of the keypad respectively, when in status mode. If only one of these parameters is set correctly the other row will display the value of the current active parameter. If both Status Mode Parameter 1 (11.018) and Status Mode Parameter 2 (11.019) are set to the parameter number then the parameter value is displayed as double height characters.

	11.0	11.023 Serial Address							
RV	V Num								US
Û	1 to 247				ightharpoons		1		

Serial Address (11.023) defines the node address for the serial comms interface in the range from 1 to 247.

Changing the parameters does not immediately change the serial communications settings. See *Reset Serial Communications* (11.020) for more details.

	11.0	24	Serial Mo	de						
R\	W	Txt								US
Û	8 8 1 O	2 NP M (4) P M (7), 7 2 1 OP (11),	NP (1), 8 7), 8 1 NP M 2 NP (8), 7 7 2 NP M (7 7 M (14), 7	(5), 8 1 EF 1 NP (9), 7 12), 7 1 NP	P M (6), 1 EP (10), P M (13),	$\hat{\mathbf{T}}$		8 2 NP	(0)	

The core drive always uses the Modbus rtu protocol and is always a slave. *Serial Mode* (11.024) defines the data format used by the serial comms interface. The bits in the value of *Serial Mode* (11.024) define the data format as follows. Bit 3 is always 0 in the core product as 8 data bits are required for Modbus RTU. The parameter value can be extended in derivative products which provide alternative communications protocols if required.

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
--------------------	--------------	---------------------	---------------	----------------------------	----------------------------	--------------------	--------------	------------	-------------------	------------------	-------------	-------------------

Bits	3	2	1 and 0
Format	Number of data bits 0 = 8 bits 1 = 7 bits	Register mode 0 = Standard 1 = Modified	Stop bits and Parity 0 = 2 stop bits, no parity 1 = 1 stop bit, no parity 2 = 1 stop bit, even parity 3 = 1 stop bit, odd parity

Bit 2 selects either standard or modified register mode. The menu and parameter numbers are derived for each mode as given in the table below. Standard mode is compatible with Unidrive SP. Modified mode is provided to allow register numbers up to 255 to be addressed. If any menus with numbers above 63 should contain more than 99 parameters, then these parameters cannot be accessed via Modbus RTU.

Register mode	Register address
Standard	(mm x 100) + ppp - 1 where mm ≤ 162 and ppp ≤ 99
Modified	(mm x 256) + ppp - 1 where mm ≤ 63 and ppp ≤ 255

Changing the parameters does not immediately change the serial communications settings. See *Reset Serial Communications* (11.020) for more details.

	11	1.025	Serial Bau	ud Rate						
	RW	Txt								US
Û		300 (0), 600 (1 9600 (5), 192 768	, , ,	100 (7), 576	. , .	⇧		19200 (6)	

Serial Baud Rate (11.025) defines the baud rate used by the serial comms interface.

Changing the parameters does not immediately change the serial communications settings. See *Reset Serial Communications* (11.020) for more details.

	11.0	26	Minimum	Comms T	ransmit De	lay			
RV	N	Num							US
Û	0 to 250 ms					ightharpoons		2 ms	

There will always be a finite delay between the end of a message from the host (master) and the time at which the host is ready to receive the response from the drive (slave). The drive does not respond until at least 1ms after the message has been received from the host allowing 1ms for the host to change from transmit to receive mode. This initial delay can be extended using *Minimum Comms Transmit Delay* (11.026) if required.

Minimum Comms Transmit Delay (11.026)	Action
0	The transmitters are turned on and data transmission begins immediately after the initial delay (≥ 1 ms)
1	The transmitters are turned on after the initial delay (≥ 1 ms) and data transmission begins 1 ms later
2 or more	The transmitters are turned on after a delay of at least the time specified by <i>Minimum Comms Transmit Delay</i> (11.026) and data transmission begins 1 ms later

The drive holds its own transmitters active for up to 1ms after it has transmitted data before switching to the receive mode; the host should not send any data during this time.

Changing the parameters does not immediately change the serial communications settings. See *Reset Serial Communications* (11.020) for more details.

	11.0	27	Silent Per	iod					
RV	Ν	Num							US
Û	0 to 250 ms					ightharpoons		0 ms	

The silent period defines the idle time required to detect the end of a received data message. If *Silent Period* (11.027) = 0 then the silent period is at least 3.5 characters at the selected baud rate. This is the standard silent period for Modbus RTU. If *Silent Period* (11.027) is non-zero it defines the minimum silent period in milliseconds.

Changing the parameters does not immediately change the serial communications settings. See *Reset Serial Communications* (11.020) for more details.

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information

	11.0	28	Drive Der	ivative					
RO)	Num			N	D	NC	PT	
Û			0 to 25	5	\Diamond				

Drive Derivative (11.028) shows the derivative identifier.

		11.029 Software Version									
I	RC)	Num				N	D	NC	PT	
	ţţ.			0 to 99999	9999		$\hat{\Gamma}$				

Software Version (11.029) displays the drive software version number as a decimal number wwxxyyzz. A keypad will display the value in this parameter as ww.xx.yy.zz.

	11.0	30	User Seci	urity Code					
RV	N	Num			N	D	NC	PT	US
Û			0 to 214748	33647	\Diamond				

See User Security Status (11.044).

I	11.031 User Drive Mode										
	R۷	V	Txt				N	D	NC	PT	
	Û	Oper	n-loop (1), F	RFC-A (2), I	RFC-S (3),	Regen (4)	\Diamond				

User Drive Mode (11.031) is set to the current drive mode at power-up. The user can change the drive mode as follows:

- 1. Set Pr mm.000 (mm.000) to 1253, 1254, 1255 or 1256
- 2. Change User Drive Mode (11.031) to the required mode
- 3. Initiate a drive reset

Provided Drive Active (10.002) = 0 the drive will change to the new drive mode, and then load and save parameters to non-volatile memory. If Pr mm.000 (mm.000) is not set to one of the specified values then the drive mode does not change on drive reset. The value in Pr mm.000 (mm.000) determines which defaults are loaded as follows.

Pr mm.000 (mm.000)	Defaults loaded
1253	50Hz defaults to all menus
1254	60Hz defaults to all menus
1255	50Hz defaults to all menus except 15 to 20 and 24 to 28
1256	60Hz defaults to all menus except 15 to 20 and 24 to 28

	11.0	32	Maximum	Heavy Du	ity Rating				
RO	C	Num					NC	PT	
\$		0.0	000 to 9999	9.999 A		\Diamond			

Maximum Heavy Duty Rating (11.032) defines the maximum setting for Rated Current (05.007) that gives heavy duty operation. If Maximum Heavy Duty Rating (11.032) = 0.000 then heavy duty operation is not possible. If Maximum Heavy Duty Rating (11.032) = VM_RATED_CURRENT[MAX] then normal duty operation is not possible.

		11.0	33	Drive Rate	ed Voltage						
	RO		Txt				N	D	NC	PT	
\hat{v}		20	00 V (0), 40	00 V (1), 57	′5 V (2), 69	0 V (3)	$\hat{\Box}$				

Value	Text
0	200 V
1	400 V
2	575 V
3	690 V

Drive Rated Voltage (11.033) shows the voltage rating of the drive.

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
--------------------	--------------	---------------------	---------------	----------------------------	----------------------------	-----------------	--------------	------------	-------------------	------------------	-------------	-------------------

İ		11.034 Software Sub-version									
	RC)	Num				N	D	NC	PT	
	Û			0 to 99	9		ightharpoons				

For legacy applications Software Sub-version (11.034) shows the yy part of Software Version (11.029).

	11.035 Number Of Power Modules T								
R)	Num							US
Û			-1 to 2	0		\uparrow		-1	

Number Of Power Modules Detected (11.071) shows the number of power modules detected in the drive when communications with the power system is established. The number of modules can be checked and a trip initiated depending on the value of Number Of Power Modules Test (11.035) as follows:

Number Of Power Modules Test (11.035)	Test	Trip if test fails
-1	The number of modules detected is compared to the value in <i>Number Of Power Modules Detected</i> (11.071) before it is updated with the number of modules present	Configuration.mmm where mmm is the value of Number Of Power Modules Detected (11.071) before it is updated
0	None	None
>0	The number of modules detected is compared to the value in <i>Number Of Power Modules Test</i> (11.035)	Configuration.mmm where mmm is the value of Number Of Power Modules Test (11.035)

If Number Of Power Modules Test (11.035) = -1 a test is being carried out to see if the number of modules detected has changed. Number Of Power Modules Detected (11.071) is a user save parameter, and so on power-up the number of modules can be compared with the number last saved when the system last powered up correctly.

If Number Of Power Modules Test (11.035) > 0 the expected number of modules are stored in Number Of Power Modules Test (11.035), and if the number powering up successfully changes then this can be detected.

The sub-trip number always indicates the expected number of power modules. The actual number detected can always be seen in *Number Of Power Modules Detected* (11.071).

	11.0	36	NV Media	Card File	Previously	Load	ded			
	२०	RO Num						NC	PT	
\hat{v}			0 to 99	9		\Rightarrow			0	

NV Media Card File Previously Loaded (11.036) shows the number of the last parameter file transferred from an NV Media Card to the drive. If defaults are subsequently reloaded NV Media Card File Previously Loaded (11.036) is set to 0.

	11.0	37	NV Media Card File Number									
RO	O Num											
Û	0 to 999				\Rightarrow			0				

NV Media Card File Number (11.037) is used to select a file by its file identification number and can only be changed to values that correspond to files that are recognized by the drive on the NV media card or a value of 0. When NV Media Card File Number (11.037) corresponds to the number of a file the following data about the file is shown.

Parameter
NV Media Card File Type (11.038)
NV Media Card File Version (11.039)
NV Media Card File Checksum (11.040)

The actions of erasing a card, erasing a file, creating a new file, changing a Menu 0 parameter or removing a card resets *NV Media Card File Number* (11.037) to 0.

		11.0	38	NV Media	Card File	Туре					
	RC)	Txt				N	D	NC	PT	
Į.	ţ			-loop (1), R Jser Prog (\Diamond				

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information	l
--------------------	--------------	------------------------	---------------	----------------------------	----------------------------	--------------------	--------------	------------	----------------	------------------	-------------	-------------------	---

NV Media Card File Type (11.038) shows the file type of the file selected with NV Media Card File Number (11.037) as shown in the table below.

NV Media Card File Type (11.038)	File
0	No file selected
1	Open-loop mode parameter file
2	RFC-A mode parameter file
3	RFC-S mode parameter file
4	Regen mode parameter file
5	Onboard user program file
6	Option module applications file

		11.0	39	NV Media Card File Version									
	RO)	Num				N	D	NC	PT			
1	Ĵ			0 to 999	99		\Diamond						

NV Media Card File Version (11.039) shows the version number stored with the file selected with NV Media Card File Number (11.037).

To set a file version number on a NV media card, the number required must be set in NV Media Card File Required Version (11.077) and then the data must be written to the NV media card. Failure to do this will result in no version number being displayed when selecting the NV media card file number in NV Media Card File Number (11.037).

I		11.0	40	NV Media Card File Checksum										
	RO	RO Num					N	D	NC	PT				
	Û		-21474	483648 to 2	214748364	7	\uparrow							

NV Media Card File Checksum (11.040) shows the checksum from the file selected with NV Media Card File Number (11.037). If the media file is a Unidrive SP SMARTCARD file, the checksum is (Σ All bytes except the checksum) modulo 65536. If the file was generated by a Unidrive M, a value of zero will be displayed.

	11.0	042	Paramete	r Cloning						
	RW	Txt					NC			US
Û	١	lone (0), Re	ad (1), Prog Boot (4		uto (3),	\Diamond		None (0)	

Value	Text
0	None
1	Read
2	Program
3*	Auto
4*	Boot

^{*} Only a value of 3 or 4 in this parameter is saved.

Parameter Cloning (11.042) can also be used to initiate data transfer to or from an NV media card as described below for each possible value of this parameter.

1: Read

Provided a parameter file with file identification number 1 exists on the NV media card then setting *Parameter Cloning* (11.042) = 1 and initiating a drive reset will transfer the parameter data to the drive (i.e. the same action as writing 6001 to Pr **mm.000** (mm.000)). When the action is complete *Parameter Cloning* (11.042) is automatically reset to zero.

2. Program

Setting *Parameter Cloning* (11.042) and initiating a drive reset will transfer the parameter data from the drive to a parameter file with file identification number 1. This is the same action as writing 4001 to Pr **mm.000** (mm.000) except that the file will be overwritten if it already exists. When the action is complete *Parameter Cloning* (11.042) is automatically reset to zero.

3: Auto

Setting *Parameter Cloning* (11.042) = 3 and initiating a drive reset will transfer the parameter data from the drive to a parameter file with file identification number 1. This is the same action as writing 4001 to Pr **mm.000** (mm.000) except that the file will be overwritten if it already exists. When the action is complete *Parameter Cloning* (11.042) remains at 3.

If the card is removed when *Parameter Cloning* (11.042) = 3, then *Parameter Cloning* (11.042) is set to 0, which forces the user to change *Parameter Cloning* (11.042) back to 3 if auto mode is still required. The user will need to set *Parameter Cloning* (11.042) = 3 and initiate a drive reset to write the complete parameter set to the new card.

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
--------------------	--------------	---------------------	---------------	----------------------------	----------------------------	--------------------	--------------	------------	----------------	------------------	-------------	-------------------

When a parameter in Menu zero is changed via the keypad and *Parameter Cloning* (11.042) = 3 the parameter is saved both to the drive non-volatile memory and to the parameter file with identification number 1 on the card. Only the new value of the modified parameter, and not the value of all the other drive parameters, is stored each time. If *Parameter Cloning* (11.042) is not cleared automatically when a card is removed, then when a new card is inserted that contains a parameter file with identification number 1 the modified parameter would be written to the existing file on the new card and the rest of the parameters in this file may not be the same as those in the drive.

When *Parameter Cloning* (11.042) = 3 and the drive parameters are saved to non-volatile memory, the file on the card is also updated, therefore this file becomes a copy of the drive parameters. At power up, if *Parameter Cloning* (11.042) = 3, the drive will save its complete parameter set to the card. This is done to ensure that if a card is inserted whilst the drive is powered down the new card will have the correct data after the drive is powered up again.

4: Boot

When *Parameter Cloning* (11.042) = 4 the drive operates in the same way as with *Parameter Cloning* (11.042) = 3 and automatically creates a copy of its parameters on the NV Media card. The NC (not clonable) attribute for *Parameter Cloning* (11.042) is 1, and so it does not have a value stored in the parameter file on the card in the normal way. However, the value of Parameter Cloning (11.042) is held in the parameter file header. If *Parameter Cloning* (11.042) = 4 in the parameter file with a file identification value of 1 on an NV media card fitted to a drive at power-up then the parameters from the parameter file with file identification number 1 are transferred to the drive and then saved in non-volatile memory. *Parameter Cloning* (11.042) is then set to 0 after the data transfer is complete.

It is possible to create a bootable parameter file by setting Pr mm.000 (mm.000) = 2001 and initiating a drive reset. This file is created in one operation and is not updated when further parameter changes are made.

When the drive is powered up it detects which option modules are fitted before loading parameters from an NV media card which has been set up for boot mode. If a new option module has been fitted since the last time the drive was powered up, a Slot1 Different trip is initiated and then the parameters are transferred from the card. If the parameter file includes the parameters for the newly fitted option module then these are also transferred to the drive and the Slot1 Different trip is reset. If the parameter file does not include the parameters for the newly fitted option module then the drive does not reset the Slot1 Different trip. Once the transfer is complete the drive parameters are saved to non-volatile memory. The trip can be reset either by initiating a drive reset or by powering down and then powering up again.

	11.0	43	Load Defa	aults						
RV	W Txt						NC			
\$	None (0), Standard (1), US (2)					\Diamond		None (0)	

Value	Text
0	None
1	Standard
2	US

If Load Defaults (11.043) is non-zero and a drive reset is initiated then the drive will load and save default parameters. If Load Defaults (11.043) = 1 then 50Hz defaults are loaded and if Load Defaults (11.043) = 2 then 60 Hz defaults are loaded. This parameter has priority over actions defined by Pr mm.000 (mm.000) and Parameter Cloning (11.042). If Load Defaults (11.043) is used to initiate loading defaults the it is cleared along with Pr mm.000 (mm.000) and Parameter Cloning (11.042) when the action is completed.

	11.0)44	User Secu	rity Status	S				
R۱	Ν	Txt					NC		
\$		Read-only	u 0 (0), All I Menu 0 (2) Only (4), N	, Read-onl		\Diamond			

Security

The drive provides a number of different levels of security that can be set by the user via *User Security Status* (11.044); these are shown in the table below

Security Level	Description	User Security Status (11.044)
Menu 0	All writable parameters are available to be edited but only parameters in Menu 0 are visible.	0
All menus	All writable parameters are visible and available to be edited.	1
Read-only Menu 0	All parameters are read-only. Access is limited to Menu 0 parameters only.	2
Read-only	All parameters are read-only however all menus and parameters are visible.	3
Status only	The keypad remains in status mode and no parameters can be viewed or edited	4
No access	The keypad remains in status mode and no parameters can be viewed or edited. Drive parameters cannot be accessed via a comms/fieldbus interface in the drive or any option module.	5

When security has been set up the drive can either be in the locked or unlocked state. In the locked state the security level that has been set up applies. In the unlocked state the security is not active, but when the drive is powered down and powered up again the drive will be in the locked state. The drive may be re-locked without powering down by selecting the required security level with the *User Security Status* (11.044) and initiating a drive reset.

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
--------------------	--------------	---------------------	---------------	----------------------------	----------------------------	--------------------	--------------	------------	-------------------	------------------	-------------	-------------------

Security can be set up as follows:

- 1. The *User Security Code* (11.030) should be set to the desired security unlock code (not zero). For security to remain set after power down then a parameter save should be performed to retain the set value.
- 2. If no further action is taken when the drive is powered down and then powered up read-only security will be set up and locked.
- 3. If at any time the *User Security Status* (11.044) is set to a value corresponding the one of the security levels shown in the table above and a drive reset is performed the security level is changed to that level. The desired security level is automatically saved and retained after power down, the keypad state changes to status mode and security is locked. (The security level that is active, provided *User Security Code* (11.030) has been saved as a non-zero value, if shown in *Security Status* (11.085).

When security is set up and locked:

- 1. Parameter access is restricted as shown in the table above.
- 2. User Security Code (11.030) reads as zero except in parameter edit mode. Therefore it is not possible to read the value of the security code when any level of security is active and locked.

Security can be unlocked as follows:

- 1. If read-only security is set and locked then any attempt to edit any read/write parameter causes "Security code" to be displayed on the first row of the display. When the Up or Down keys are pressed the second row shows the code being adjusted. On setting the code the user presses the Enter key. If the correct code has been entered then the drive switches to Parameter edit mode on the parameter the user selected to edit, but if the correct code has not been entered the notification "Incorrect security code" is displayed for 2 s and the drive returns to Parameter view mode.
- 2. If Status only or No access security is set and locked then any attempt to leave status mode causes the security code to be requested as per the process described above. If the security code entered must be correct for the keypad state machine to switch to the Parameter view mode. It is then possible to access all parameters normally.

Security can be cleared as follows:

- 1. Security must be unlocked.
- 2. The *User Security Code* (11.030) should be set to zero. For security to remain cleared after power down then a parameter save should be performed.

At any time Security Status (11.085) can be changed between 0 and 1 to restrict access to Menu 0 alone or to all menus. If the change is made by a keypad the new value becomes active on leaving parameter edit mode.

It should be that *Security Status* (11.085) is a volatile parameter and that the actual state of the security system is stored in *Security Status* (11.085) and *Menu Access Status* (11.086), which are both power-down save parameters. Therefore the security status will be stored when the drive goes into the under-voltage state. If the drive is already in the under-voltage state the security state should be saved by writing 1000 to Pr **mm.000** (mm.000) and initiating a reset.

	11.0	45	Select Mo	tor 2 Para	meters						
RV	N	Txt				U					
\$			0 to 1			\Rightarrow			0		

	11.0)46	Defaults F	Previously	Loaded					
F	RO	Num	n				D	NC	PT	US
Û		0 to 2000								

Defaults Previously Loaded (11.046) shows the value used to load the previously loaded defaults (i.e. 1233 for 50 Hz defaults, or 1244 for 60 Hz defaults).

	11.0	47	Onboard	Onboard User Program: Enable										
RV	N	Txt	US											
Û	Stop (0), Run (1)					ightharpoons			Run (1)				

Onboard user programming provided a background task that loops continuously and a timed task that is executed each time at a defined rate.

Onboard User Program: Enable (11.047) allows the onboard user program to the stopped or run.

0: Stop

The onboard user program is stopped. If it is restarted by setting *Onboard User Program: Enable* (11.047) to a non-zero value the background task starts from the beginning.

1: Run

The onboard user program will run.

	11.048 Onboard User Program: Sta										
R	0	Num					D	NC	PT		
\$	-2147483648 to 2147483647				\Diamond			Run (1	1)		

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
--------------------	--------------	---------------------	---------------	----------------------------	----------------------------	--------------------	--------------	------------	----------------	------------------	-------------	-------------------

Onboard User Program: Status (11.048) shows the status of the onboard user program.

Value	Description
0	A user program is present but is stopped
1	The user program is running
2	The user program has an exception
3	No user program is present

	11.049 Onboard User Program: Programming Events										
RO	RO Num						D	NC	PT		
Û	0 to 65535					\Rightarrow					

Onboard User Program: Programming Events (11.049) = 0 when the drive is manufactured and is incremented each time an onboard user program image is written to the drive. If an onboard user program image is written more than 65535 times Onboard User Program: Programming Events (11.049) = 65535. Onboard User Program: Programming Events (11.049) shows how many times the flash memory within the drive has been reprogrammed.

	11.0	50	Onboard User Program: Freewheeling Tasks Per Second										
R	O Num					N	D	NC	PT				
$\hat{\mathbf{v}}$	0 to 65535				\Diamond								

During each scan in a freewheeling task it is possible to give an indication to the drive that the scan loop is starting. If this indication is given then Onboard User Program: *Freewheeling Tasks Per Second* (11.050) will give the number of times this indication is given per second.

	11.0	51	Onboard	User Prog	ram: Clock	Task	Time	e Used		
R	О	Num				N	D	NC	PT	
\$			0.0 to 100	.0 %		ightharpoons				

Onboard User Program: Clock Task Time Used (11.051) shows the percentage of the available time used by the onboard user program clock task.

	11.0	52	Serial Nur	nber LS						
R)	Num				N	D	NC	PT	
Û		,	splay: 0000 99 (Display	,	99)	$\hat{\mathbf{T}}$				

The drive serial number is available as a pair of 32 bit values where *Serial Number LS* (11.052) provides the least significant 9 decimal digits and *Serial Number MS* (11.053) provides the most significant 9 decimal digits. The reconstructed serial number is ((11.053 x 1000000000) + 11.052).

Example 1

Serial number "1234567898765" would be stored as 11.053 = 1234, 11.052 = 567898765.

Example 2

Serial number "1234000056789" would be stored as 11.053 = 1234, 11.052 = 56789. Serial Number LS (11.052) will be shown on the keypad as 000056789 (i.e. including the leading zeros).

I		11.0	53	Serial Nui	mber LS					
I	RC)	Num			N	D	NC	PT	
	Û			0 to 99999	9999	\Rightarrow				

See Serial Number LS (11.052).

	11.0	54	Drive Date	e Code					
RO)	Num			N	D	NC	PT	
Û			0 to 655	35	\Rightarrow				

Drive Date Code (11.054) is a four-digit number in the form yyww where yy is the year and ww the week number.

	11.0	55	Onboard	User Prog	ram: Clock	Task	Sch	eduled Inte	erval	
RO)	Num				N	D	NC	PT	
$\hat{\mathbb{Q}}$			0 to 26214	0 ms		ightharpoons				

Onboard User Program: Clock Task Scheduled Interval (11.055) shows the interval at which the clock task is scheduled to run at in ms.

information introduction Information design Installation Installation started Optimization Parameters data sizing Diagnostics Information	Safety Ir Ir	ntroduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
---	--------------	-------------	------------------------	---------------	----------------------------	----------------------------	--------------------	--------------	------------	-------------------	------------------	-------------	-------------------

	11.0	56	Option SI	ot Identifie	ers					
F	₹W	Txt						PT		
\$	1432 31 24	42 (10), 21 13 (14), 42 41 (18), 24	(6), 3124 (7 43 (11), 34 113 (15), 23	7), 4132 (8) 412 (12), 43 414 (16), 32 241 (20), 34	, 2134 (9), 312 (13), 214 (17),	⇧		1234 (0)	

If Option Slot Identifiers (11.056) is set to its default value of 0 each option module is assigned the same slot number as its physical slot. For example the module in physical slot 1 appears in slot 1 to all drive and option module software systems (i.e. it uses Menu 15 as its set-up menu and Menu 25 as its application menu etc). This arrangement can be changed by selecting a different value for Option Slot Identifiers (11.056). Although Option Slot Identifiers (11.056) is a volatile parameter its value is saved in non-volatile memory when parameters are saved. If Option Slot Identifiers (11.056) is changed the drive must be powered down and then powered up again for the change to take effect.

	11.0	60	Maximum	Rated Cu	rrent					
RO)	Num				N	D	NC	PT	
Û		0.0	000 to 9999	9.999 A		$\hat{\Gamma}$				

Maximum Rated Current (11.060) defines the variable maximum VM_RATED_CURRENT[MAX] which defines the Maximum Rated Current (05.007). Therefore Maximum Rated Current (11.060) is the maximum rated current for normal duty operation (if normal duty operation is allowed).

	11.0	61	Full Scale	Current K	(C					
F	₹0	Num				N	D	NC	PT	
$\hat{\mathbb{Q}}$		0.0	000 to 9999	9.999 A		\Box				

Full Scale Current Kc (11.061) shows the full scale current in r.m.s. Amps. If the drive current exceeds this level it will cause an over current trip.

	11.0	62	Power Bo	ard Softwa	are Versior	ı Nun	nber			
R	О	Num				N	D	NC	PT	
Û			0.00 to 99	9.99		$\hat{\Gamma}$				

Power Board Software Version Number (11.062) gives the version for the power board connected to the control board or the power board in node 1 of a multi-power module drive.

	11.0	063	Product T	уре					
R	0	Num			N	D	NC	PT	
Û			0 to 25	5	$\hat{\Gamma}$				

Product Type (11.063) shows the core product type as given in the table below. The drive could be the basic product or a derivative of the basic product as defined by *Drive Derivative* (11.028).

Product Type (11.063)	Core Product Range
0	Unidrive M

	11.0	64	Product lo	dentifier C	haracters					
RO Num						N	D	NC	PT	
\$\frac{1}{3}\$ 1295396912 to 21474836					7	$\hat{\Gamma}$				

Example

The model number M700-03400078 A001 00 AB100 would be displayed in parameters as follows:

Parameter	Value
Product Identifier Characters (11.064)	M700
Drive Rating And Configuration (11.065)	03400078
Additional Identifier Characters 1 (11.091)	A001
Additional Identifier Characters 2 (11.092)	00AB
Additional Identifier Characters 3 (11.093)	100-

Safety	Introduction	Product	System	Mechanical	Electrical	Getting	Ontimization	Baramatara	Technical	Component	Diagnostics	UL
information	Introduction	Information	design	Installation	Installation	started	Optimization	Parameters	data	sizing	Diagnostics	Information

	11.0	65	Drive Rati	Drive Rating And Configuration									
RO	RO Num					N	D	NC	PT				
Û	0 (Display: 00000000) to 99999999 (Display: 99999999)					\Diamond							

Drive Rating And Configuration (11.065) is split into a number of fields as defined in the table below.

Digits	Meaning
7 and 6	Frame size
5	Voltage code (2 = 200 V, 4 = 400 V, 5 = 575 V, 6 = 690 V)
4 and 0	Current rating multiplied by 10. If the drive has a heavy and normal duty rating (i.e. <i>Maximum Heavy Duty Rating</i> (11.032) > 0 and <i>Maximum Rated Current</i> (11.060) > <i>Maximum Heavy Duty Rating</i> (11.032), or the drive only has a heavy duty rating (i.e. <i>Maximum Heavy Duty Rating</i> (11.032) = <i>Maximum Rated Current</i> (11.060), then the current rating is derived from <i>Maximum Heavy Duty Rating</i> (11.032). Otherwise if the drive only has a normal duty rating (i.e. <i>Maximum Heavy Duty Rating</i> (11.032) = 0) then the current rating is derived from <i>Maximum Rated Current</i> (11.060)

	11.0	166	Power Sta	age Identif						
R	0	Num					D	NC	PT	
Û	① to 255				ightharpoons					

Power Stage Identifier (11.066) is used to show power stages that require changes to the drive user parameters (i.e. visibility, range or defaults). It should be noted that this parameter does not identify the rating of the power stage.

Power Stage Identifier (11.066)	Power Stage
0	Standard Unidrive M
1	Unidrive M with no braking IGBT
2	Servo drive

I	11.067			Control Board Identifier								
I	RO Num						N	D	NC	PT		
	① 0.000 to 65.535				\Diamond							

Control Board Identifier (11.067) identifies the control board hardware in the form A.BBB. BBB is the hardware identifier from the control board and A indicates whether this is a standard or high speed product as given in the table below.

Α	BBB	Control Board
0	002 or 003	Unidrive M - Standard
1	002 or 003	Unidrive M - High Speed
0	004	Servo

	11.0	68	Internal I/	O Identifie	r					
RO	С	Num				N	D	NC	PT	
$\hat{\mathbb{Q}}$	0 to 255					\Diamond				

Internal I/O Identifier (11.068) identifies the internally fitted I/O option as given in the table below.

Internal I/O Identifier (11.068)	Internal I/O
0	Analog and digital I/O
1	Digtial only I/O
2	Analog and digital I/O with additional relay
3	Servo drive I/O

Safety		Product	System	Mechanical	Electrical	Getting		_	Technical	Component		UL
information	Introduction	Information	design	Installation	Installation	started	Optimization	Parameters	data	sizing	Diagnostics	Information

The tables below show which I/O functions are available for each of the internally fitted I/O options.

AI/O	0	1	2	3
Analog Input 1	All except Disable	All except Disable		Voltage
Analog Input 2	All except Disable	All except Disable		
Analog Input 3	Voltage, Thermistor	Voltage	Thermistor, Disable	
Analog Output 1	Voltage	All		
Analog Output 2	Voltage	All		

DI/O	Function	0	1	2	3
1	Input/Output	Input/Output	Output	Input/Output	Output
2	Input/Output	Input/Output	Output	Input/Output	Output
3	Input/Output	Input/Output		Input/Output	
4	Input	Input	Input	Input	Input
5	Input	Input	Input	Input	Input
6	Input	Input		Input	
7	Relay Output	Output	Output	Output	
8	24V Supply Output	Output	Output	Output	Output
9	Safe Torque Off 1	Input	Input	Input	Input
10	Safe Torque Off 2	Input*	Input	Input*	Input
11	Keypad Run Button	Input	Input	Input	
12	Keypad Auxiliary Button	Input	Input	Input	
13	24V Supply Input	Input	Input	Input	
14	Keypad Stop Button	Input	Input	Input	
15	Relay 2 Output			Output	
16	Reset button				Input

^{*} Only one hardware input is provided which is shared by STO1 and STO2.

	11.069 Position Feedback Interface Identifier										
RO)	Num				N	D	NC	PT		
\$			0 to 25	5		\Diamond					

	11.0	70	Core Para	meter Dat	abase Vers	sion				
R	0	Num					D	NC	PT	
$\hat{\mathbb{Q}}$	0.00 to 99.99					\uparrow				

Core Parameter Database Version (11.070) gives the version number of the parameter database used to define the core parameter menus in the drive (Menu 1 to 14 and 21 to 23) in 2 digit BCD format. All other menus are customizable and if these menus are changed their default values are automatically loaded. However, if the drive software is changed it may be necessary to load defaults for all menus, although this will only be required rarely. Defaults for all menus are loaded when the most significant digit of Core Parameter Database Version (11.070) changes. Therefore if the drive firmware is modified and the most significant digit of the core database version has changed an EEPROM Fail.001 trip is initiated and default parameters are loaded.

		11.0	71	Number C	of Power M	lodules De	tecte	d			
I	RO)	Num					D	NC	PT	US
	Û	0 to 20					$\hat{\Gamma}$				

Number Of Power Modules Detected (11.071) shows the number of power modules detected in a drive. See Number Of Power Modules Test (11.035) for details.

	11.0	72	NV Media	Card Crea	ite Special	File			
RV	W Num						NC		
Û	0 to 1					\Diamond		0	

If NV Media Card Create Special File (11.072) = 1 when a parameter file is transferred to an NV media card the file is created as a macro file. NV Media Card Create Special File (11.072) is reset to 0 after the file is created or the transfer fails.

Safety	Introduction	Product	System	Mechanical	Electrical	Getting	Optimization	Paramotore	Technical	Component	Diagnostics	UL
information	Introduction	Information	design	Installation	Installation	started	Optimization	Parameters	data	sizing	Diagnostics	Information

	11.0	73	NV Media	Card Type	e					
RO	C	Txt					D	NC	PT	
\$		0 to 2				\Rightarrow				

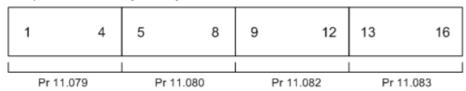
Value	Text	Description
0	None	No media card has been inserted
1	SMARTCARD	A SMARTCARD has been inserted
2	SD Card	A FAT formatted SD card has been inserted

NV Media Card File Type (11.038) shows the type of non-volatile media card inserted in the drive.

1		11.075 NV Media Card Read-only F									
	RC)	Bit				N	D	NC	PT	
	Û	Off (0) or On (1)					\Rightarrow				

NV Media Card Read-only Flag (11.075) shows the state of the read-only flag for the currently fitted card.

	11.0	76	NV Media	Card Read	d-only Flag	ı				
RO)	Bit			N	D	NC	PT		
$\hat{\mathbb{O}}$	Off (0) or On (1)					$\hat{\mathbb{T}}$				


NV Media Card Warning Suppression Flag (11.076) shows the state of the warning flag for the currently fitted card.

	11.0	77	NV Media	Card File	Required \	/ersic	n			
R	W Num					N	D	NC	PT	
Û		0 to 999								

The value of *NV Media Card File Required Version* (11.077) is used as the version number for a file when it is created on an NV media card. *NV Media Card File Required Version* (11.077) is reset to 0 when the file is created or the transfer fails.

	11.0	79	Drive Nan	ne Charact	ters 1-4				
RV	W Num							PT	US
$\hat{\mathbb{O}}$	-2147483648 to 2147483647					$\hat{\Box}$			

Drive Name Characters 1-4 (11.079) to Drive Name Characters 13-16 (11.082) can be used to store a 16 character string which can be used to identify the drive. The string is arranged as shown below.

This uses the standard ASCII character set.

	11.0	80	Drive Nan	ne Charact	ters 5-8				
F	RM	W Num						PT	US
\mathfrak{J}		-2147483648 to 2147483647							

See Drive Name Characters 1-4 (11.079).

	11.0	81	Drive Nan	ne Charact	ters 9-12				
RV	W Num							PT	US
Û	-2147483648 to 2147483647					$\hat{\Gamma}$		0	

See Drive Name Characters 1-4 (11.079).

Safety information Introduction Product Information Product Information Installatio
--

	11.0	82	Drive Nan	ne Charac	ters 13-16				
RV	V Num							PT	US
Û	-2147483648 to 2147483647					\Rightarrow		0	

See Drive Name Characters 1-4 (11.079).

	11.084 Drive Mode										
I	RO Txt		Txt				N	D	NC	PT	US
I	Û	Open-loop (1), RFC-A (2), RFC-S (3), Regen (4)					\Diamond				

Drive Mode (11.084) is used to hold the currently active drive mode.

	11.085 Security Status										
I	RO)	Txt				N	D	NC	PT	PS
	Û	None (0), Read-only (1), Status-only (2), No Access (3)				nly (2),	\Box				

Value	Text
0	None
1	Read-only
2	Status-only
3	No Access

Security Status (11.085) shows the security that will apply when security is enabled by setting a non-zero value for User Security Code (11.030).

		11.086 Menu Access Status									
	RO T		Txt				N	D	NC	PT	PS
4	Û	Menu 0 (0), All Menus (1)			ightharpoons						

If Menu Access Status (11.086) = 0 then only Menu 0 can be accessed with a keypad. If Menu Access Status (11.086) = 1 then all menus can be accessed with a keypad.

		11.090 Keypad Port Serial Address								
ĺ	RV	٧	Num							US
	Û	1 to 16					ightharpoons		1	

Keypad Port Serial Address (11.090) defines the node address for the keypad port serial comms interface. Normally the default value of 1 is used, but this can be changed if required. The keypad attached to the port will sense the address automatically.

	11.0	91	Additional Identifier Characters 1									
R	RO Num					N	D	NC	PT			
$\hat{\mathbb{U}}$		-21474	483648 to 2	14748364	7	$\hat{\Gamma}$						

See Product Identifier Characters (11.064).

	11.0	11.092 Additional Identifier Charact								
	RO	O Num				N	D	NC	PT	
$\hat{\mathbb{Q}}$		-2147483648 to 2147483647								

See Product Identifier Characters (11.064).

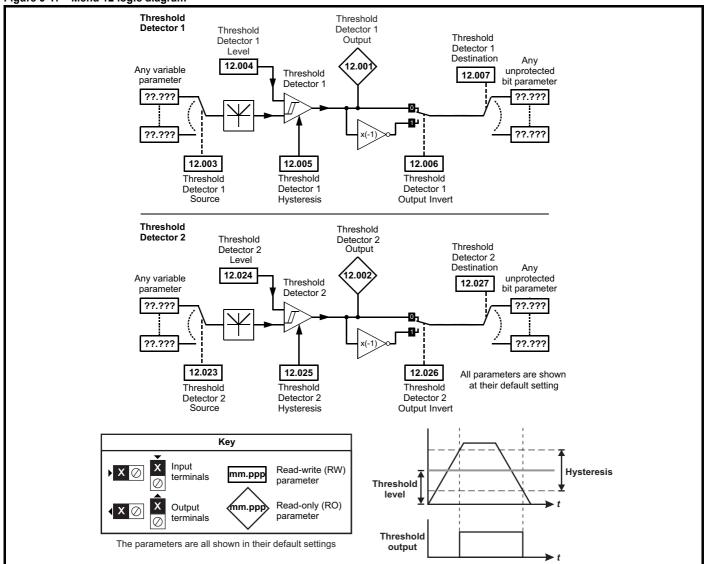
	Character	s 3								
RO	C	Num				N	D	NC	PT	
Û		-2147	483648 to 2147483647			$\hat{\Box}$				

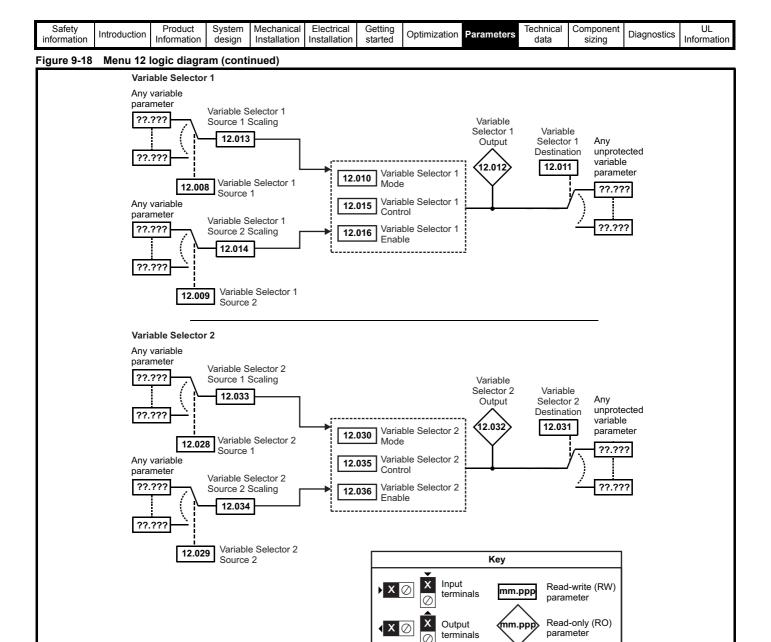
See Product Identifier Characters (11.064).

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
--------------------	--------------	---------------------	---------------	----------------------------	----------------------------	-----------------	--------------	------------	-------------------	------------------	-------------	-------------------

I		11.095 Number Of Rectifiers Detected									
I	RC)	Num				N	D	NC	PT	
Ĭ	Û	0 to 9					\Rightarrow				

Indicates how many controlled rectifiers connected to the drive have been detected. See Number Of Rectifiers Expected (11.096).


	11.0	96	Number C	of Rectifier	s Expecte	d			
R۱	Ν	Num							US
Û	0 to 9			ightharpoons		0			


Number Of Rectifiers Expected (11.096) defines how many controlled rectifiers are expected on each power module. Within a complete drive with a diode input stage there are no controlled rectifiers. Within a complete drive with a controlled rectifier input stage there is one controlled rectifier. For a drive where external rectifiers are used the system can register up to nine controlled rectifiers. If Number Of Rectifiers Expected (11.096) = 0 then the rectifier monitoring system is disabled and the drive does not check how many controlled rectifiers are present. This is the default setting and should be used for complete drives with internal rectifiers because the monitoring function is not necessary. If Number Of Rectifiers Expected (11.096) is set to a non-zero value a check is made to ensure that at least this number of external rectifiers are connected to each power module. If there are less external rectifiers than defined by Number Of Rectifiers Expected (11.096) then a Configuration is initiated with the sub-trip indicating how many rectifiers should be present. See Trip 0 (10.020).

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information	1
--------------------	--------------	---------------------	---------------	----------------------------	----------------------------	--------------------	--------------	------------	----------------	------------------	-------------	-------------------	---

9.12 Menu 12: Threshold detectors and variable selectors

Figure 9-17 Menu 12 logic diagram

The parameters are all shown in their default settings

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
--------------------	--------------	---------------------	---------------	----------------------------	----------------------------	--------------------	--------------	------------	----------------	------------------	-------------	-------------------

Table 9-15 Menu 12 Regen parameter descriptions

	Parameter	Range	Default			Ty	эе		
12.001	Threshold Detector 1 Output	Off (0) or On (1)		RO	Bit	ND	NC	PT	
12.002	Threshold Detector 2 Output	Off (0) or On (1)		RO	Bit	ND	NC	PT	
12.003	Threshold Detector 1 Source	0.000 to 59.999	0.000	RW	Num			PT	US
12.004	Threshold Detector 1 Level	0.00 to 100.00 %	0.00 %	RW	Num				US
12.005	Threshold Detector 1 Hysteresis	0.00 to 25.00 %	0.00 %	RW	Num				US
12.006	Threshold Detector 1 Output Invert	Off (0) or On (1)	Off (0)	RW	Bit				US
12.007	Threshold Detector 1 Destination	0.000 to 59.999	0.000	RW	Num	DE		PT	US
12.008	Variable Selector 1 Source 1	0.000 to 59.999	0.000	RW	Num			PT	US
12.009	Variable Selector 1 Source 2	0.000 to 59.999	0.000	RW	Num			PT	US
12.010	Variable Selector 1 Mode	Input 1 (0), Input 2 (1), Add (2), Subtract (3), Multiply (4), Divide (5), Time Const (6), Ramp (7), Modulus (8), Powers (9), Sectional (10)	Input 1 (0)	RW	Txt				US
12.011	Variable Selector 1 Destination	0.000 to 59.999	0.000	RW	Num	DE		PT	US
12.012	Variable Selector 1 Output	±100.00 %		RO	Num	ND	NC	PT	
12.013	Variable Selector 1 Source 1 Scaling	±4.000	1.000	RW	Num				US
12.014	Variable Selector 1 Source 2 Scaling	±4.000	1.000	RW	Num				US
12.015	Variable Selector 1 Control	0.00 to 100.00	0.00	RW	Num				US
12.016	Variable Selector 1 Enable	Off (0) or On (1)	On (1)	RW	Bit				US
12.023	Threshold Detector 2 Source	0.000 to 59.999	0.000	RW	Num			PT	US
12.024	Threshold Detector 2 Level	0.00 to 100.00	0.00	RW	Num				US
12.025	Threshold Detector 2 Hysteresis	0.00 to 25.00	0.00	RW	Num				US
12.026	Threshold Detector 2 Output Invert	Off (0) or On (1)	Off (0)	RW	Bit				US
12.027	Threshold Detector 2 Destination	0.000 to 59.999	0.000	RW	Num	DE		PT	US
12.028	Variable Selector 2 Source 1	0.000 to 59.999	0.000	RW	Num			PT	US
12.029	Variable Selector 2 Source 2	0.000 to 59.999	0.000	RW	Num			PT	US
12.030	Variable Selector 2 Mode	Input 1 (0), Input 2 (1), Add (2), Subtract (3), Multiply (4), Divide (5), Time Const (6), Ramp (7), Modulus (8), Powers (9), Sectional (10)	Input 1 (0)	RW	Txt				US
12.031	Variable Selector 2 Destination	0.000 to 59.999	0.000	RW	Num	DE		PT	US
12.032	Variable Selector 2 Output	±100.00 %		RO	Num	ND	NC	PT	
12.033	Variable Selector 2 Source 1 Scaling	±4.000	1.000	RW	Num				US
12.034	Variable Selector 2 Source 2 Scaling	±4.000	1.000	RW	Num				US
12.035	Variable Selector 2 Control	0.00 to 100.00	0.00	RW	Num				US
12.036	Variable Selector 2 Enable	Off (0) or On (1)	On (1)	RW	Bit				US

	12.0	001	Threshold	d Detector	1 Output					
RO)	Bit				N	D	NC	PT	
Û			Off (0) or On (1)			\uparrow				

The threshold detector functions are always active even if the source and destination are not routed to valid parameters. If the source is not a valid parameter then the source value is taken as 0. The update rate for each of the threshold detector functions is always 4 ms.

The following description is for threshold detector 1, but threshold detector 2 operates in the same way. The level of the parameter defined by *Threshold Detector 1 Source* (12.003) is converted to a percentage and compared to *Threshold Detector 1 Level* (12.004) with hysteresis to give *Threshold Detector 1 Output* (12.001) as follows:

Source	Threshold Detector 1 Output (12.001)
Source	0
Lower threshold ≤ Source	No change of state
Source ≥ Upper threshold	1

Lower threshold = Threshold Detector 1 Level (12.004) - Threshold Detector 1 Hysteresis (12.005)

Upper threshold = Threshold Detector 1 Level (12.004) + Threshold Detector 1 Hysteresis (12.005)

The output value can then be inverted with *Threshold Detector 1 Output Invert* (12.006) before being routed to the destination defined by *Threshold Detector 1 Destination* (12.007).

Safety informatio	n Introduction	Product Information	System design	Mechanical Installation		ctrical Illation	Getting started	Optimization	Parameters	Technica data
1:	2.002	Threshold [Detector	2 Output						
RO	Bit				N	D	NC	PT		
Ĵ	ı	Off (0) or On	(1)		\Rightarrow					
1:	2.003	Threshold [Detector	1 Source						
RW	Num							PT		US
Ì		0.000 to 59.9	999		\Rightarrow			0.000		
1:	2.004	Threshold [Detector	1 Level						
RW	Num									US
ţ		0.00 to 100.	00	•	\Rightarrow			0.00	'	
1:	2.005	Threshold [Detector	1 Hysteres	is					
RW	Num									US
;		0.00 to 25.0	00		\Rightarrow			0.00		
1:	2.006	Threshold [Detector	1 Output Ir	vert					
RW	Bit									US
;	ı	Off (0) or On	(1)		\Rightarrow			Off (0))	
1:	2.007	Threshold [Detector	1 Destinati	on					
RW	Num							PT		US
;		0.000 to 59.9	999		\Rightarrow			0.000		
1:	2.008	Variable Se	lector 1	Source 1						
RW	Num							PT		US
Ĵ		0.000 to 59.9	999		\Rightarrow			0.000		

The variable selector functions are always active even if the source and destination are not routed to valid parameters. If a source is not a valid parameter then the source value is taken as 0. The update rate for each of the variable selector functions is always 4 ms.

The following description is for variable selector 1, but variable selector 2 operates in the same way. The source parameters selected with *Variable Selector 1 Source 1* (12.008) and *Variable Selector 1 Source 2* (12.009) are converted to a percentage value, scaled with *Variable Selector 1 Source 1 Scaling* (12.013) and *Variable Selector 1 Source 2 Scaling* (12.014) respectively and then combined with a function defined by *Variable Selector 1 Mode* (12.010) to give *Variable Selector 1 Output* (12.012) as a percentage value. If *Variable Selector 1 Enable* (12.016) = 1 then the function operates normally. If *Variable Selector 1 Enable* (12.016) = 0 then *Variable Selector 1 Output* (12.012) = 0.00 % and any states within the function are reset (i.e. the time constant function accumulator is held at zero). If the value of *Variable Selector 1 Mode* (12.010) is changed then all internal function state are also reset.

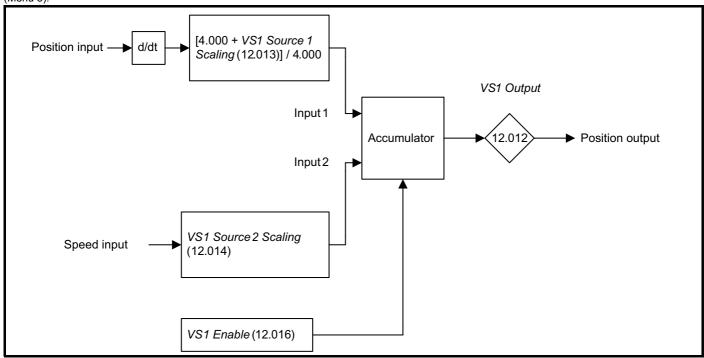
Component

sizing

UL

Information

Diagnostics


Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information	
--------------------	--------------	------------------------	---------------	----------------------------	----------------------------	--------------------	--------------	------------	-------------------	------------------	-------------	-------------------	--

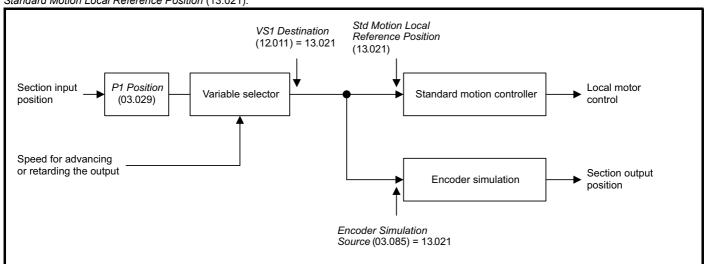
The table below shows the functions that can be selected with Variable Selector 1 Mode (12.010).

Variable Selector 1 Mode (12.010)	Variable Selector 1 Output (12.012)
0: Input 1	Input 1
1: Input 2	Input 2
2: Add	Input 1 + Input 2
3: Subtract	Input 1 - Input 2
4: Multiply	(Input 1 x Input 2) / 100.00 %
5: Divide	(Input 1 x 100.00 %) / Input 2
6: Time Const	Input 1 / (1 + τ s) where τ = Variable Selector 1 Control (12.015) seconds
7: Ramp	Input 1 as an input to a linear ramp function where the time to ramp from 0.00 % to 100.00 % is defined by Variable Selector 1 Control (12.015) seconds
8: Modulus	Input1
	If Variable Selector 1 Control (12.015) = 0.02 then Input ² / 100.00 %
9: Powers	Else if <i>Variable Selector 1 Control</i> (12.015) = 0.03 then Input ³ / 100.00 % Else Input 1
10: Sectional	See description below

Sectional Controller

If *Variable Selector 1 Mode* (12.010) = 10 then the variable selector can be used to provide a sectional control function. (Variable selector 2 operates in the same way.) The sectional control function is intended to apply scaling and a speed offset to a 16 bit position value to generate a new 16 bit position value. The output can be used as an input to the Standard motion controller (Menu 13) and to generate an encoder simulation output (Menu 3).

The position input is selected with *Variable Selector 1 Source 1* (12.008) and can be derived from any parameter. However, it is intended to be used with a position value that has a range from 0 to 65535 (e.g. *P1 Position* (03.029)). The input is scaled so that as Variable Selector 1 Source 1 Scaling (12.013) is changed between -4.000 and 4.000 so the proportion of the input position change added to the accumulator varies from 0.000 to 2.000 (i.e. the change of position input value is added without scaling if *Variable Selector 1 Source 1 Scaling* (12.013) = 0.000). The remainder from the scaling division is stored and then added at the next sample to maintain an exact ratio between the position input and the position output, provided the speed from source 2 is zero. The controller only takes the change of position from the input source parameter, and not the absolute value, so that when the controller is first made active the output does not jump to the source position, but only moves with any changes of source position after that point in time.


The range of *Variable Selector 1 Output* (12.012) is 0.00 % and 100.00 %. Unlike other functions the value is not simply limited, but rolls under or over respectively. Although the output destination can be any parameter it is intended to be used with a position value that has a range from 0 to 65535.

The speed input defines a speed offset with a resolution of 0.1rpm. Full scale of the source parameter corresponds to 1000.0 rpm. Scaling may be applied using *Variable Selector 1 Source 2 Scaling* (12.014) to give a full scale value up to 4000.0 rpm. The speed input is added to the accumulator to move the output position forwards or backwards with respect to the position input.

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
			accig		otaat.o	010.100				0.29		

The sample time for the variable selector is 4ms and the input or output position must not change by more than half a revolution over this time. Therefore the input or output speed must not exceed 7500 rpm.

The diagram below shows an example of how the sectional controller function could be configured. The section input position is provided from the previous section via the P1 position feedback interface. The destination of the variable selector is the Standard Motion Local Reference Position (13.021) in the standard motion controller which is used to provide the speed reference and to control the local motor attached to the drive. The encoder simulation system is used to generate the section output to be fed into the next drive. The source for the encoder simulation is *Standard Motion Local Reference Position* (13.021).

	12.0	09	Variable S	Selector 1	Source 2				
R	W	V Num						PT	US
Û	0.000 to 59.999							0.000	

I		12.0	12.010 Variable Selector 1 Mode							
	RV	V Txt								US
	Û	0 to 10					ightharpoons		0	

Value	Text
0	Input 1
1	Input 2
2	Add
3	Subtract
4	Multiply
5	Divide
6	Time Const
7	Ramp
8	Modulus
9	Powers
10	Sectional

	12.0	11	Variable S	Selector 1	Destination	า			
RV	N	V Num						PT	US
\$	0.000 to 59.999					ightharpoons		0.000	

	12.0	12	Variable S	Selector 1	Output					
R	0	Num Num					D	NC	PT	
Û	0.000 to 59.999					$\hat{\Gamma}$			0.000	

Sofot	., I	Product	System	Mechanical	Electric	al Getting	ı		Technical	Component	1	UL
Safet informat		n Information	System design	Installation	Installati		Optimization	Parameters	data	Component sizing	Diagnostics	Information
	12.013	Variable C	alaatau 1	Cauras 4 C	aalina					1		
RW		variable 5	elector	Source 1 S	caling	1			US			
\$	Num	-4.000 to 4	. 000		⇒		1.000		- 00			
V		-4.000 to 4	000		ŕ		1.000					
	12.014	Variable S	elector 1	Source 2 S	caling							
RW									US			
Û		-4.000 to 4	.000		\Rightarrow		1.000					
	12.015	Variable S	elector 1	Control								
RW	Num								US			
Û		0.00 to 10	0.00		\Rightarrow		0.00					
	42.046	Variation 2	alacta:: 4	Control						Ī		
RW	12.016 Bit	Variable S	elector 1	Control			T	1	US			
₩	DIL	Off (0) or O)n (1)		\Rightarrow		On (1))	55			
		. ,										
	Selector 1 En s will still funct) and <i>Varia</i>	able Selecto	or 2 Enab	ole (12.036) l	nave a defau	It of 1 so that	if these pa	arameters a	re not used	the variable
	12.023	Threshold	l Detector	2 Source								
RW	Num						PT		US			
Û		0.000 to 59	9.999		\Rightarrow		0.000					
										İ		
RW	12.024 Num	Threshold	Detector	2 Levei		1			US			
\$	Nulli	0.00 to 10	0.00		⇒		0.00		03			
₩		0.00 to 10	0.00		7		0.00					
	12.025	Threshold	l Detector	2 Hysteres	sis							
RW									US			
()	.	0.00 to 25	5.00	•	\Rightarrow	•	0.00	•				
	12.026	Threshold	Detector	2 Output I	nvert							
RW	Bit								US			
Û		Off (0) or O	n (1)		⇧		Off (0))				
										I		
	12.027	Threshold	Detector	2 Destinat	ion		L DT	1	110			
RW	Num	0.000 t- 50			_		PT		US			
4.2		0.000 to 59	9.999		\Rightarrow		0.000	1				
Û										Ī		
	12 028	Threshold	Detector	2 Destinat	ion							
	12.028	Threshold	l Detector	2 Destinat	ion		PT		US			
RW				2 Destinat	ion		PT 0.000		US			
		Threshold 0.000 to 59		2 Destinat			PT 0.000		US			
RW).999						US			
RW	Num	0.000 to 59).999						US			

12.030

Txt

Variable Selector 2 Mode

 \Rightarrow

0 to 10

US

0

12.032	1	Technica data	Parameters	Optimization	Getting started	ctrical allation		Mechanical Installation	System design	Product Information	Introduction	Safety nformation
1	1			ext	Te					е	Value	
2	2			out 1	Inp						0	
3 Subtract 4 Multiply 5 Divide 6 Time Const 7 Ramp 8 Modulus 9 Powers 10 Sectional 12.031 Variable Selector 2 Destination RW Num PT US ↑ O.000 to 59.999	3 Subtract 4 Multiply 5 Divide 6 Time Const 7 Ramp 8 Modulus 9 Powers 10 Sectional 12.031 Variable Selector 2 Destination RW Num PT O.000 to 59.999											
4	4											
5	5											
6	6 Time Const 7 Ramp 8 Modulus 9 Powers 10 Sectional 12.031 Variable Selector 2 Destination RW Num PT											
7	7											
8	8											
9	9			•								
12.031	12.031										9	
RW Num PT US 12.032 Variable Selector 2 Output O.000 O.000 RO Num ND NC PT 12.033 Variable Selector 2 Source 1 Scaling O.000 O.000 RW Num US O.000 12.034 Variable Selector 2 Source 2 Scaling O.000 O.000 RW Num O.000 O.000 12.034 Variable Selector 2 Source 2 Scaling O.000 O.000 12.035 Variable Selector 2 Source 2 Scaling O.000 O.000 12.035 Variable Selector 2 Source 2 Scaling O.000 O.000	RW Num		-	tional	Sec						10	
RW Num PT US 12.032 Variable Selector 2 Output O.000 O.000 RO Num ND NC PT 12.033 Variable Selector 2 Source 1 Scaling O.000 O.000 RW Num US O.000 12.034 Variable Selector 2 Source 2 Scaling O.000 O.000 RW Num O.000 O.000 12.034 Variable Selector 2 Source 2 Scaling O.000 O.000 12.035 Variable Selector 2 Source 2 Scaling O.000 O.000 12.035 Variable Selector 2 Source 2 Scaling O.000 O.000	RW Num						n	Destinatio	lector 2	Variable Se	31	12.0
12.032	12.032	US		PT			Ī					
RO	RO		<u> </u>	0.000			二	<u>I</u>	999	0.000 to 59.9	(:
RO	RO						<u> </u>					<u> </u>
12.033 Variable Selector 2 Source 1 Scaling RW Num US 12.034 Variable Selector 2 Source 2 Scaling RW Num US 12.034 Variable Selector 2 Source 2 Scaling RW Num US 12.035 Variable Selector 2 Source 2 Scaling RW Num US	↑ -100.00 to 100.00							Output	lector 2	Variable Se		
12.033 Variable Selector 2 Source 1 Scaling RW Num US -4.000 to 4.000 ⇒ 1.000 12.034 Variable Selector 2 Source 2 Scaling RW Num US -4.000 to 4.000 ⇒ 1.000 12.035 Variable Selector 2 Source 2 Scaling RW Num US	12.033 Variable Selector 2 Source 1 Scaling RW Num -4.000 to 4.000 □ 1.000 12.034 Variable Selector 2 Source 2 Scaling RW Num 1.000 12.035 Variable Selector 2 Source 2 Scaling RW Num Num			PT	NC	ID					Num	
RW Num US 12.034 Variable Selector 2 Source 2 Scaling RW Num US -4.000 to 4.000 ⇒ 1.000 12.035 Variable Selector 2 Source 2 Scaling RW Num US	RW Num -4.000 to 4.000 □ 1.000 12.034 Variable Selector 2 Source 2 Scaling RW Num □ □ 1.000 □ 1.000 12.035 Variable Selector 2 Source 2 Scaling RW Num □			0.000			4		0.00	00.00 to 10	-1	
RW Num US 12.034 Variable Selector 2 Source 2 Scaling RW Num US -4.000 to 4.000 ⇒ 1.000 12.035 Variable Selector 2 Source 2 Scaling RW Num US	RW Num -4.000 to 4.000 □ 1.000 12.034 Variable Selector 2 Source 2 Scaling RW Num □ □ 1.000 □ 1.000 12.035 Variable Selector 2 Source 2 Scaling RW Num □					ıa	Scal	Source 1 S	lector 2	Variable Se	33	12 0
12.034	12.034	US				9	, ou.			141141515 55		
RW Num US -4.000 to 4.000 ⇒ 1.000 12.035 Variable Selector 2 Source 2 Scaling RW Num US	RW Num 1.000 12.035 Variable Selector 2 Source 2 Scaling RW Num			1.000			二		000	-4.000 to 4.0		
RW Num US \$\psi\$ -4.000 to 4.000 \$\psi\$ 1.000 12.035 Variable Selector 2 Source 2 Scaling RW Num US	RW Num 1.000 \$\psi\$ -4.000 to 4.000 \$\psi\$ 1.000 12.035 Variable Selector 2 Source 2 Scaling RW Num											
12.035	12.035 Variable Selector 2 Source 2 Scaling RW Num 1.000					g	Scal	Source 2 S	lector 2	Variable Se		
12.035 Variable Selector 2 Source 2 Scaling RW Num US	12.035 Variable Selector 2 Source 2 Scaling RW Num	US									Num	
RW Num US	RW Num			1.000			4		000	-4.000 to 4.0	-	
RW Num US	RW Num					a	Scal	Source 2 S	lector 2	Variable Se	35	12.0
① 0.00 to 100.00		US				9						
·	·			0.00			๘		00	0.00 to 100.	<u> </u>	:

 \Rightarrow

Bit

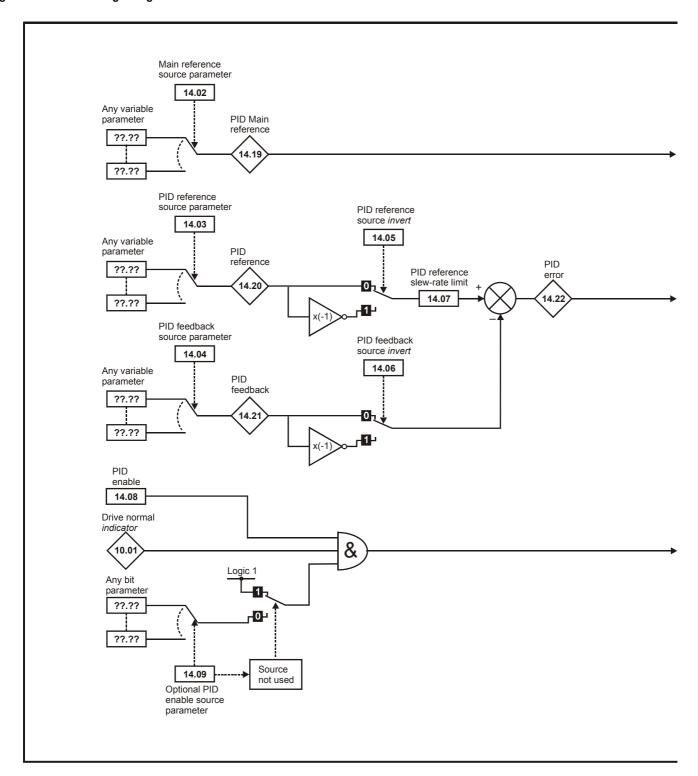
Off (0) or On (1)

Component sizing

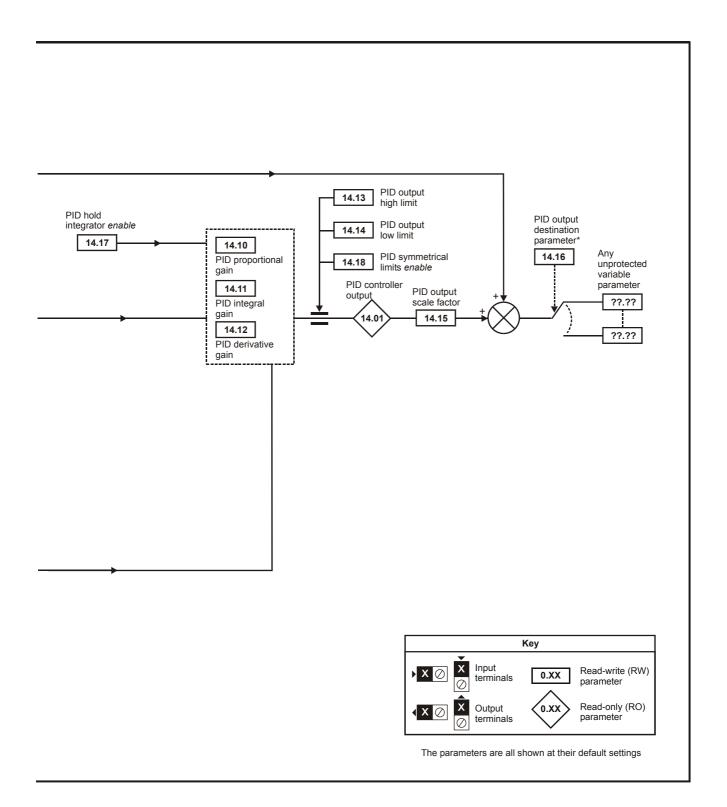
US

On (1)

UL Information


Diagnostics

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
--------------------	--------------	------------------------	---------------	----------------------------	----------------------------	--------------------	--------------	------------	----------------	------------------	-------------	-------------------


9.13 Menu 14: User PID controller

This menu contains a PID controller which has programmable reference and feedback inputs, programmable enable bit, reference slew rate limiting, variable clamp levels and programmable destination. The sample rate of the PID controller is 4 ms.

Figure 9-19 Menu 14 logic diagram

Safety	Introduction	Product	System	Mechanical	Electrical	Getting	Optimization	Parameters	Technical	Component	Diagnostics	UL
information	Introduction	Information	design	Installation	Installation	started	Optimization	Farameters	data	sizing	Diagnostics	Information

Safety	Introduction	Product	System	Mechanical	Electrical	Getting	Ontimization	Baramatara	Technical	Component	Diagnostics	UL
information	Introduction	Information	design	Installation	Installation	started	Optimization	Parameters	data	sizing	Diagnostics	Information

Two general purpose PID controllers are provided as shown in the diagram below. Both operate in the same way except that PID controller 2 does not include alternative feedback and error selection. In the following sections a description is given for PID controller 1. The descriptions also apply to PID controller 2 except where stated. The sample rate for the PID controllers is always 4 ms.

Figure 9-20 PID controllers

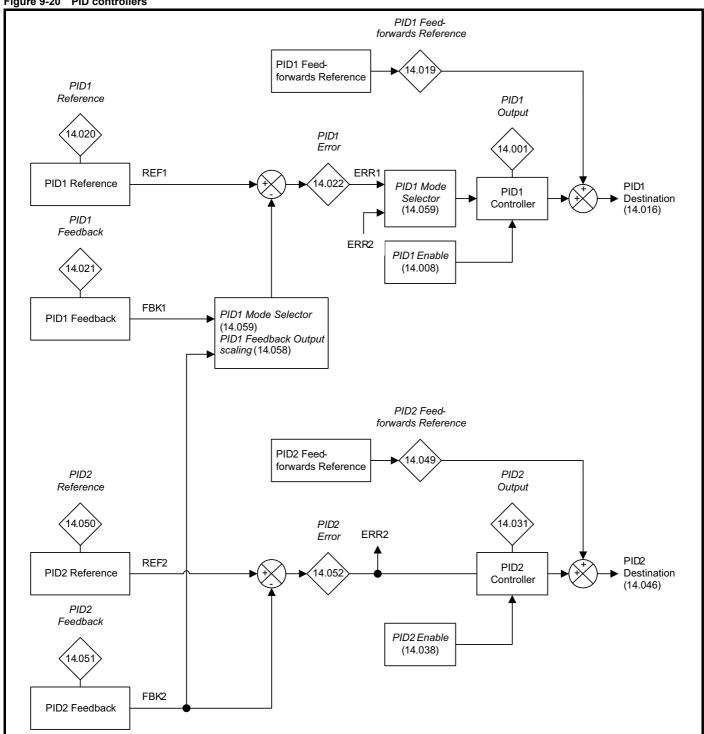


Figure 9-21 PID references

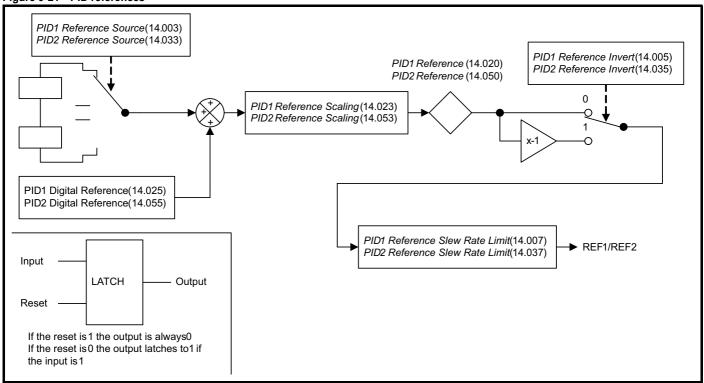
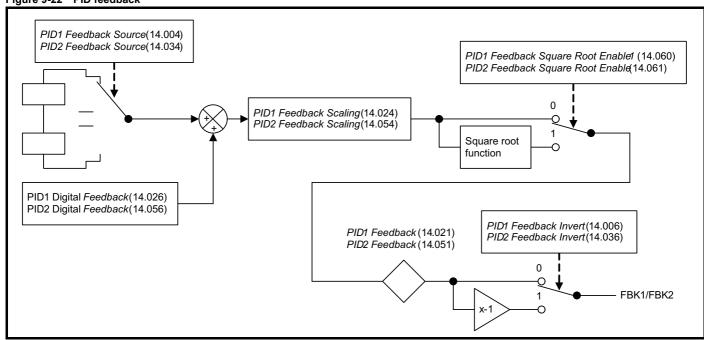



Figure 9-22 PID feedback

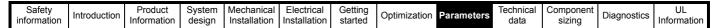


Figure 9-23 PID controllers (standard mode)

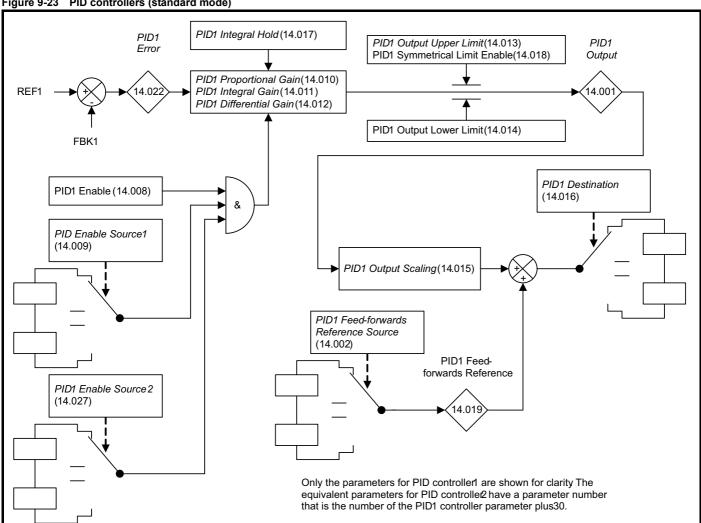
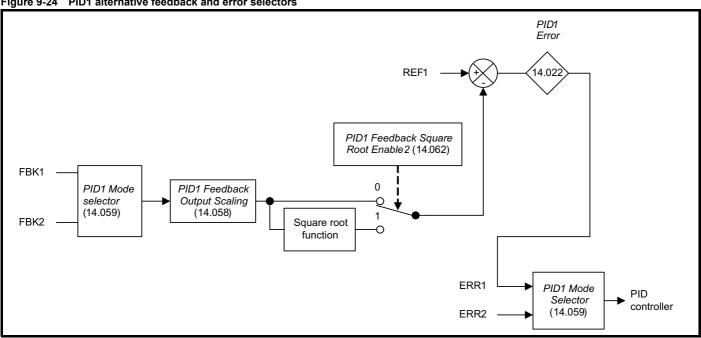



Figure 9-24 PID1 alternative feedback and error selectors

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
--------------------	--------------	---------------------	---------------	----------------------------	----------------------------	--------------------	--------------	------------	----------------	------------------	-------------	-------------------

Table 9-16 Menu 14 Regen parameter descriptions

	Parameter	Range	Default			Туре	9		
14.001	PID1 Output	±100.00 %		RO	Num	ND	NC	PT	
14.002	PID1 Feed-forwards Reference Source	0.000 to 59.999	0.000	RW	Num			PT	US
14.003	PID1 Reference Source	0.000 to 59.999	0.000	RW	Num			PT	US
14.004	PID1 Feedback Source	0.000 to 59.999	0.000	RW	Num			PT	US
14.005	PID1 Reference Invert	Off (0) or On (1)	Off (0)	RW	Bit				US
14.006	PID1 Feedback Invert	Off (0) or On (1)	Off (0)	RW	Bit				US
14.007	PID1 Reference Slew Rate	0.0 to 3200.0 s	0.0 s	RW	Num				US
14.008	PID1 Enable	Off (0) or On (1)	Off (0)	RW	Bit				US
14.009	PID1 Enable Source 1	0.000 to 59.999	0.000	RW	Num			PT	US
14.010	PID1 Proportional Gain	0.000 to 4.000	1.000	RW	Num				US
14.011	PID1 Integral Gain	0.000 to 4.000	0.500	RW	Num				US
14.012	PID1 Differential Gain	0.000 to 4.000	0.000	RW	Num				US
14.013	PID1 Output Upper Limit	0.00 to 100.00	100.00	RW	Num				US
14.014	PID1 Output Lower Limit	±100.00	-100.00	RW	Num				US
14.015	PID1 Output Scaling	0.000 to 4.000	1.000	RW	Num				US
14.016	PID1 Destination	0.000 to 59.999	0.000	RW	Num	DE		PT	US
14.017	PID1 Integral Hold	Off (0) or On (1)	Off (0)	RW	Bit				- 55
14.017	PID1 Symmetrical Limit Enable	Off (0) or On (1)	Off (0)	RW	Bit				US
14.019	PID1 Symmetrical Limit Enable PID1 Feed-forwards Reference	±100.00 %	Oii (0)	RO	Num	ND	NC	PT	- 50
14.019	PID1 Reference	±100.00 %		RO	Num	ND	NC	PT	
14.020	PID1 Feedback	±100.00 %		RO	Num	ND	NC	PT	
14.021	PID1 Error	±100.00 %		RO	Num	ND	NC	PT	
14.023	PID1 Reference Scaling	0.000 to 4.000	1.000	RW	Num	IND	NO	' '	US
14.024	PID1 Feedback Scaling	0.000 to 4.000	1.000	RW	Num				US
14.025	PID1 Digital Reference	±100.00 %	0.00 %	RW	Num				US
14.026	PID1 Digital Feedback	±100.00 %	0.00 %	RW	Num				US
14.027	PID1 Enable Source 2	0.000 to 59.999	0.000	RW	Num			PT	US
14.031	PID2 Output	±100.00 %	0.000	RO	Num	ND	NC	PT	00
14.031	PID2 Feed-forwards Reference Source	0.000 to 59.999	0.000	RW	Num	ND	INC	PT	US
14.032	PID2 Reference Source	0.000 to 59.999	0.000	RW	Num			PT	US
14.033	PID2 Feedback Source	0.000 to 59.999	0.000	RW	Num			PT	US
14.034	PID2 Reference Invert	Off (0) or On (1)	Off (0)	RW	Bit			РΙ	US
14.036	PID2 Feedback Invert	. , , , ,	` '	RW	Bit				US
14.036	PID2 Reference Slew Rate Limit	Off (0) or On (1) 0.0 to 3200.0 s	Off (0) 0.0 s	RW	Num				US
14.037	PID2 Releience Siew Rate Limit PID2 Enable			RW	Bit				US
		Off (0) or On (1)	Off (0)					DT	US
14.039	PID2 Enable Source 1	0.000 to 59.999	0.000	RW	Num			PT	
14.040	PID2 Proportional Gain	0.000 to 4.000	1.000	RW	Num				US
14.041	PID2 Integral Gain	0.000 to 4.000	0.500	RW	Num				US
14.042	PID2 Differential Gain	0.000 to 4.000	0.000	RW	Num				US
14.043	PID2 Output Louis Limit	0.00 to 100.00	100.00	RW	Num				US
14.044	PID2 Output Seeling	±100.00	-100.00	RW	Num				
14.045	PID2 Output Scaling	0.000 to 4.000	1.000	RW	Num	ר		DT	US
14.046	PID2 Destination	0.000 to 59.999	0.000	RW	Num	DE		PT	US
14.047	PID2 Integral Hold	Off (0) or On (1)	Off (0)	RW	Bit				110
14.048	PID2 Symmetrical Limit Enable	Off (0) or On (1)	Off (0)	RW	Bit	ric.	NIC	D.T.	US
14.049	PID2 Feed-forwards Reference	±100.00 %		RO	Num	ND	NC	PT	
14.050	PID2 Reference	±100.00 %		RO	Num	ND	NC	PT	
14.051	PID2 Feedback	±100.00 %		RO	Num	ND	NC	PT	
14.052	PID2 Error	±100.00 %	4.000	RO	Num	ND	NC	PT	
14.053	PID2 Reference Scaling	0.000 to 4.000	1.000	RW	Num				US
14.054	PID2 Feedback Scaling	0.000 to 4.000	1.000	RW	Num				US
14.055	PID2 Digital Reference	±100.00 %	0.00 %	RW	Num				US
14.056	PID2 Digital Feedback	±100.00 %	0.00 %	RW	Num				US
14.057	PID2 Enable Source 2	0.000 to 59.999	0.000	RW	Num			PT	US
14.058	PID1 Feedback Output Scaling	0.000 to 4.000	1.000	RW	Num				US
14.059	PID1 Mode Selector	Fbk1 (0), Fbk2 (1), Fbk1 + Fbk2 (2), Min Fbk (3), Max Fbk (4), Av Fbk (5), Min Error (6), Max Error (7)	Fbk1 (0)	RW	Txt				US

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Compo		Diagnosti	cs I	UL nforma	tion
14.060	PID1 Feedbad	ck Square Ro	ot Enable 1		Ot	ff (0) or On	(1)	Off	(0)	RW	Bit				US
14.061	PID2 Feedbac	ck Square Ro	ot Enable		Ot	ff (0) or On	(1)	Off	(0)	RW	Bit				US
14.062	PID1 Feedbac	ck Square Ro	ot Enable 2	2	Ot	ff (0) or On	(1)	Off	(0)	RW	Bit				US

RW	Read / Write	RO	Read only	Num	Number parameter	Bit	Bit parameter	Txt	Text string	Bin	Binary parameter	FI	Filtered
ND	No default value	NC	Not copied	PT	Protected parameter	RA	Rating dependent	US	User save	PS	Power-down save	DE	Destination

	14.0	01	PID1 Outp	out					
R	0	Num			N	D	NC	PT	
Û		-1	00.00 to 10	0.00 %	$\hat{\Box}$				

Controller

The controller section for the PID controllers and the structure of PID controller 1 in Figure 9-20 is shown when PID1 Mode Selector (14.059) = 0, PID1 Feedback Output Scaling (14.058) = 1.000, and PID1 Feedback Square Root Enable 2 (14.062) = 0. The additional features provided by these parameters are not available for PID controller 2, and so this controller always has the structure shown. If the combined enable is inactive then all internal states are held at zero and the destination parameter will be defined by PID1 Feed-forwards Reference (14.019) alone. If the enable is active the PID controller is active even if the destination is not routed to a valid parameter or to 0.000. It should be noted that if either of the enable sources is routed to 0.000 or to a non-valid parameter the source value is taken as 1, therefore with default settings, PID1 Enable Source 1 (14.009) = 0.000 and PID1 Enable Source 2 (14.027) = 0.000, the PID controller can be enabled by simply setting PID1 Enable (14.008).

PID1 Error (14.022) is the difference between the reference and feedback produced by the reference and feedback systems described in the previous sections. The PID controller output is defined as follows:

 $PID1 \ Output (14.001) = PID1 \ Error (14.022) \times [Kp + Ki/s + sKd/(0.064 s + 1)]$

Kp = PID1 Proportional Gain (14.010)

Ki = PID1 Integral Gain (14.011)

Kd = PID1 Differential Gain (14.012)

Therefore:

- 1. If PID1 Error (14.022) = 100.00 % the proportional term gives a value of 100.00 % if PID1 Proportional Gain (14.010) = 1.000.
- 2. If PID1 Error (14.022) = 100.00 % the integral term gives a value that increases linearly by 100.00 % per second if PID1 Integral Gain (14.011) = 1.000
- 3. If *PID1 Error* (14.022) increases linearly by 100.00 % per second the differential term gives a value of 100.00 % if *PID1 Differential Gain* (14.012) = 1.000. (A filter with a time constant of 64 ms is provided on the differential gain to reduce the noise produced by this term).

The output may be limited to a range that is less than the maximum range of *PID1 Output* (14.001) using *PID1 Output Upper Limit* (14.013) and *PID1 Output Lower Limit* (14.014). If PID1 Output Lower Limit (14.014) > PID1 Output Upper Limit (14.013) then the output is held at the value defined by PID1 Output Upper Limit (14.013). If PID1 Symmetrical Limit Enable (14.018) = 1 then the lower limit = -(PID1 Output Upper Limit (14.013)). If the output reaches either of these limits the integral term accumulator is frozen until the output moves away from the limit to prevent integral wind-up. The integral hold function can also be enabled by the user by setting PID1 Integral Hold (14.017) = 1.

PID1 Output Scaling (14.015) can be used to scale the output, which is limited to a range from -100.00 % to 100.00 % after this function. The output is then added to PID1 Feed-forwards Reference (14.019) and is again limited to the range from -100.00 % to 100.00 % before being routed to the destination defined by PID1 Destination (14.016).

I		14.0	02	PID1 Feed	d-forwards	Reference	Sou	rce		
	RV	٧	Num						PT	US
	Û			0.000 to 59	9.999		\Diamond		0.000	

	14.0	03	PID1 Refe	rence Sou	ırce				
RV	N	Num						PT	US
Û			0.000 to 59	9.999		ightharpoons		0.000	

The reference section for the PID controllers is shown in Figure 9-21. The reference sections are always active even if the PID controller itself is disabled or the reference sources are not routed to valid parameters. If a reference source is not a valid parameter or is 0.000 then the value is taken as zero.

The reference is the sum of the reference source, the *PID1 Digital Reference* (14.025) when it is active. The result is multiplied by *PID1 Reference Scaling* (14.023) and then limited to +/-100.00 %. The reference can then be inverted if required (*PID1 Reference Invert* (14.005) = 1) and then a slew rate limit is applied with *PID1 Reference Slew Rate* (14.007). This limits the maximum rate of change so that a change from 0.00 to 100.00 % takes the time given in PID1 Reference Slew Rate (14.007).

	14.0	004	PID1 Feed	lback Sou	rce				
RV	N	Num						PT	US
Û			0.000 to 59	9.999		\Diamond		0.000	

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
--------------------	--------------	---------------------	---------------	----------------------------	----------------------------	--------------------	--------------	------------	----------------	------------------	-------------	-------------------

Feedback

The feedback section for the PID controllers is shown in Figure 9-22. The feedback sections are always active even if the PID controller itself is disabled or the feedback sources are not routed to valid parameters. If a reference source is not a valid parameter or is 0.000 then the value is taken

The feedback is the sum of the feedback source and the PID1 Digital Feedback (14.026). The result is multiplied by PID1 Feedback Scaling (14.024) and then limited to +/-100.00 %. A square root function can be applied (PID1 Feedback Square Root Enable 1 (14.060) = 1) and the feedback can then be inverted if required (PID1 Feedback Invert (14.006) = 1). The square root function is defined as follows.

Square root function output = Sign (Input) x 100.00 % x √ (|Input| / 100.00 %)

where Sign (Input) = 1 if Input = 0 or -1 otherwise

The square root function is useful in applications where the PID controller is operating with air flow as its reference and feedback and the motor is controlling a fan. It is easier to use a pressure transducer than a flow transducer, and so the feedback from the transducer needs to be converted from pressure to flow. As flow = Constant x $\sqrt{Pressure}$ the square root function can be used in the conversion.

	14.0	005	PID1 Feed	dback Sou	rce						
RV	N	Bit	Bit US								
Û			Off (0) or C	On (1)		\Rightarrow			Off (0)	

See PID1 Reference Source (14.003).

	14.0	006	PID1 Feed	lback Inve	rt					
RV	RW Bit									US
Û	Off (0) or On (1)				ightharpoons		Off (0))		

See PID1 Feedback Source (14.004).

	14.0	007	PID1 Refe	rence Slev	w Rate				
F	RW Num								US
Û	0.0 to 3200.0 s					ightharpoons		0.0 s	

See PID1 Reference Source (14.003).

	14.0	08	PID1 Enal	ole						
RV	RW Bit									US
Û	Off (0) or On (1)					\Diamond		Off (0)	

See PID1 Output (14.001).

	14.0	09	PID1 Enal	ole Source	1				
RV	RW Num							PT	US
Û	0.000 to 59.999					ightharpoons		0.000	

See PID1 Output (14.001).

	14.0	010	PID1 Prop	ortional G	ain				
R	W	Num							US
$\hat{\mathbf{t}}$	0.000 to			.000		\Rightarrow		1.000	

See PID1 Output (14.001).

	14.0	11	PID1 Integ	gral Gain					
RV	RW Num								US
Û	0.000 to 4.000					\Box		0.500	

See PID1 Output (14.001).

		14.0	12	PID1 Diffe	erential Ga	in					
I	RV	RW Num									US
	Û	0.000 to 4.000					ightharpoons		0.000	l	

See PID1 Output (14.001).

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information

	14.0	13	PID1 Outp	out Upper	Limit					
RV	RW Num									US
Û	0.00 to 100.00					ightharpoons		100.00)	

See PID1 Output (14.001).

	14.0	14	PID1 Outp	out Lower	Limit					
RW Num		Num								US
Û	-100.00 to 100.00				\Diamond		-100.0	0		

See PID1 Output (14.001).

	14.0	15	PID1 Outp	out Scaling	1				
RV	RW Num								US
Û	0.000 to 4.000				\uparrow		1.000		

See PID1 Output (14.001).

	14.0	016	PID1 Dest	ination				
F	RW Num					PT	US	
Û	0.000 to 59.999				\Rightarrow		0.000	

See PID1 Output (14.001).

	14.0	17	PID1 Integ	gral Hold						
RV	W Bit									
\$	Off (0) or On (1)					$\hat{\Gamma}$		Off (0)	

See PID1 Output (14.001).

	14.0	18	PID1 Sym	metrical L	imit Enabl	е				
R۱	W Bit									US
Û	Off (0) or On (1)							Off (0)	

See PID1 Output (14.001).

	14.0	19	PID1 Feed	l-forwards	Reference)				
RO	RO Num					N	D	NC	PT	
Û	-100.00 to 100.00 %					$\hat{\Box}$				

See PID1 Output (14.001).

	14.0	20	PID1 Refe	rence						
RO	C	Num				N	D	NC	PT	
Û	-100.00 to 100.00 %					\Diamond				

See PID1 Reference Source (14.003).

		14.0	21	PID1 Feed	lback					
	RC)	Num			N	D	NC	PT	
1	Û	-100.00 to 100.00 %				\Diamond				

See PID1 Feedback Source (14.004).

	14.0	22	PID1 Erro	r					
R	0	Num			N	D	NC	PT	
Û	-100.00 to 100.00 %				ightharpoons				

See PID1 Output (14.001).

information design installation started data sizing information	Safety Information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
---	--------------------	--------------	------------------------	---------------	----------------------------	----------------------------	--------------------	--------------	------------	----------------	------------------	-------------	-------------------

	14.0	23	PID1 Refe	rence Sca	ling				
RV	RW Num								US
Û	0.000 to 4.000					\Rightarrow		1.000	

See PID1 Reference Source (14.003).

1		14.0	24	PID1 Feed	lback Scal	ing				
	RV	RW N								US
	Û	0.000 to 4.000					ightharpoons		1.000	

See PID1 Feedback Source (14.004).

	14.0	25	PID1 Digit	tal Referer	nce					
RV	N	Num								US
Û	-100.00 to 100.00 %					ightharpoons		0.00 %	6	

See PID1 Reference Source (14.003).

	14.0	26	PID1 Digit	tal Feedba	ck					
R۱	RW Num									US
Û	-100.00 to 100.00 %					\Rightarrow		0.00 %	6	

See PID1 Feedback Source (14.004).

	14.0	27	PID1 Enal	ble Source	2				
RV	W Num							PT	US
$\hat{\mathbf{t}}$	0.000 to 59.999							0.000	

See PID1 Output (14.001).

	14.0	31	PID2 Outp	out					
RO	O Num				N	D	NC	PT	
\$	-100.00 to 100.00 %				$\hat{\Box}$				

See PID1 Output (14.001).

	14.0	32	PID2 Feed	l-forwards	Reference	Sou	rce		
RV	N	Num						PT	US
$\hat{\mathbf{t}}$	0.000 to 59.999					ightharpoons		0.000	

See PID1 Feed-forwards Reference Source (14.002).

	14	.033	PID2 Refe	rence Sou	ırce					
	RW Num							PT		US
${\bf \hat{U}}$		0.000 to 59.999				ightharpoons		0.000	1	

See PID1 Reference Source (14.003).

	14.0	34	PID2 Feed	lback Sou	rce				
	RW	Num						PT	US
$\hat{\mathbb{Q}}$		0.000 to 59.999						0.000	

See PID1 Feedback Source (14.004).

	14.0	35	PID2 Refe	rence Inve	ert					
RV	RW Bit									US
Û	Off (0) or On (1)					\Diamond		Off (0)	

See PID1 Reference Invert (14.005).

	Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
•													

	14.0	36	PID2 Feed	back Inve	ert					
RV	N	Bit								US
Û	Off (0) or On (1)					\Diamond		Off (0)	

See PID1 Feedback Invert (14.006).

I		14.0	37	PID2 Refe	rence Slev	w Rate Lim	it			
	RV	RW Num								US
	Û	0.0 to 3200.0 s				\Diamond		0.0 s		

See PID1 Reference Slew Rate (14.007).

	14.0	38	PID2 Enal	ble					
RV	RW Bi								US
Û	Off (0) or On (1)				ightharpoons		Off (0))	

See PID1 Enable (14.008).

	14.0	039	PID2 Enal	ole Source	1				
F	RW Num							PT	US
Û		0.000 to 59.999				\Diamond		0.000	

See PID1 Enable Source 1 (14.009).

	14.0	40	PID2 Prop	ortional G	ain				
RV	W Num								US
Û	0.000 to 4.000					$\hat{\Gamma}$		1.000	

See PID1 Proportional Gain (14.010).

	14.0)41	PID2 Integ	gral Gain					
	RW	N Num							US
Û		0.000 to 4.000						0.500	

See PID1 Integral Gain (14.011).

I		14.0	42	PID2 Diffe	rential Ga	in				
	RV	V	Num							US
	Û	0.000 to 4.000				ightharpoons		0.000		

See PID1 Differential Gain (14.012).

	14.0	43	PID2 Outp	out Upper	Limit					
R۷	RW Num									US
$\hat{\mathbb{Q}}$		0.00 to 10		\Rightarrow		100.00)			

See PID1 Output Upper Limit (14.013).

	14.0)44	PID2 Outp	out Lower	Limit					
R۱	RW Num									US
Û	-100.00 to 100.00					\Rightarrow		-100.0	0	

See PID1 Output Lower Limit (14.014).

	14.0)45	PID2 Outp	out Scaline	9				
R۷	N	Num							US
Û	0.000 to 4.000					ightharpoons		1.000	

See PID1 Output Scaling (14.015).

The State of the s	Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
--	--------------------	--------------	------------------------	---------------	----------------------------	----------------------------	-----------------	--------------	------------	----------------	------------------	-------------	-------------------

	14.0)46	PID2 Dest	ination				
RV	N	Num					PT	US
$\hat{\mathbf{t}}$	0.000 to 59.999				\Rightarrow		0.000	

See PID1 Destination (14.016).

	14.0	47	PID2 Integ	gral Hold				_	_
F	RW	Bit							
$\hat{\mathbf{U}}$	Off (0) or On (1)			\Diamond		Off (0))		

See PID1 Integral Hold (14.017).

	14.0	148	PID2 Sym	metrical L	imit Enable	е				
RV	N	Bit								US
\$	Off (0) or On (1)				\Rightarrow		Off (0))		

See PID1 Symmetrical Limit Enable (14.018).

	14.0	149	PID2 Feed	l-forwards	Reference)				
R	0	Num				N	D	NC	PT	
Û	-100.00 to 100.00 %					ightharpoons				

See PID1 Feed-forwards Reference (14.019).

	14.0	50	PID2 Refe	rence						
RO	C	Num				N	D	NC	PT	
$\hat{\mathbb{Q}}$	-100.00 to 100.00 %				ightharpoons					

See PID1 Reference (14.020).

				PID2 Feed	lback					
I	RO	RO Nun				N	D	NC	PT	
	Û	-100.00 to 100.00 %				\Diamond				

See PID1 Feedback (14.021).

	14.0	52	PID2 Erro	r						
F	RO	Num				N	D	NC	PT	
Û		-100.00 to 100.00 %				$\hat{\mathbb{T}}$				

See PID1 Error (14.022).

	14.0	53	PID2 Refe	rence Sca	ling				
RV	N	/ Num							US
Û	0.000 to 4.000					ightharpoons		1.000	

See PID1 Reference Scaling (14.023).

	14.0	54	PID2 Feed	lback Scal	ling				
RV	N	Num							US
Û	0.000 to 4.000							1.000	

See PID1 Feedback Scaling (14.024).

	14.0	55	PID2 Digit	tal Referen	ice					
RV	N	Num								US
Û	-100.00 to 100.00 %					\Diamond		0.00 %	0	

See PID1 Digital Reference (14.025).

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information

	14.0)56	PID2 Digit	tal Feedba	ck					
R۷	N	Num								US
Û		-1	00.00 to 10	0.00 %		\Rightarrow		0.00 %	6	

See PID1 Digital Feedback (14.026).

	14.0	57	PID2 Enal	ole Source	2				
RV	V	Num						PT	US
Û	0.000 to 59.999					ightharpoons		0.000	

See PID1 Enable Source 2 (14.027).

	14.058 PID1 Feedback Output Scal								
RV	V Num								US
Û	0.000 to 4.000					$\hat{\Box}$		1.000	

PID1 alternative feedback and error selection

The description given in *PID1 Output* (14.001) assumed that *PID1 Mode Selector* (14.059) = 0 so that PID controller 1 uses its own feedback (FBK1). It is possible to select alternative configurations that allow various combinations of feedback or error from either PID controller to be used as shown below.

PID1 Mode Selector (14.059) can be used to select the feedback and error as shown in the table below. It should be noted that PID controller 2 will operate normally even when its feedback or error has been selected for PID controller 1. However, if PID1 Mode Selector (14.059) is non-zero PID controller 2 enable is controlled directly by the enable state of PID controller 1.

PID1 Mode Selector (14.059)	Feedback	Error
0: Fbk1	FBK1	ERR1
1: Fbk2	FBK2	ERR1
2: Fbk1 + Fbk2	FBK1 + FBK2	ERR1
3: Min Fbk	Lowest of FBK1 or FBK2	ERR1
4: Max Fbk	Highest of FBK1 or FBK2	ERR1
5: Av Fbk	(FBK1 + FBK2) / 2	ERR1
6: Min Error	FBK1	If ERR1 ≤ ERR2 then ERR1 Else ERR2
7: Max Error	FBK1	If ERR1 ≥ ERR2 then ERR1 Else ERR2

PID1 Feedback Output Scaling (14.058) can then be used to scale the results. PID1 Feedback Square Root Enable 2 (14.062) can be used in converting the output of the combined feedback from pressure to flow. It is easier to use a pressure transducer than a flow transducer, and so the feedback from the transducer needs to be converted from pressure to flow. As flow = Constant $x \lor Pressure$ the square root function can be used in the conversion.

		14.0	59	PID1 Mod	e Selector						
	RV	V	Txt								US
1	Ĵ		` '.	1), Fbk1 + f), Av Fbk (Max Erro	5), Min Erro	` '.	\Diamond		Fbk1 ((0)	

Value	Text
0	Fbk1
1	Fbk2
2	Fbk1 + Fbk2
3	Min Fbk
4	Max Fbk
5	Av Fbk
6	Min Error
7	Max Error

See PID1 Feedback Output Scaling (14.058).

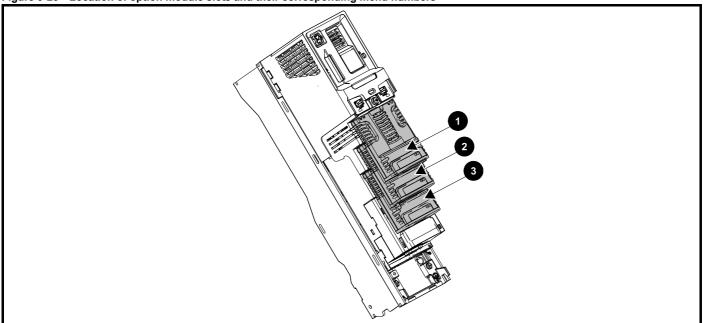
Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
--------------------	--------------	---------------------	---------------	----------------------------	----------------------------	-----------------	--------------	------------	----------------	------------------	-------------	-------------------

	14.0	60	PID1 Feed	lback Squ	are Root E	nable	1			
RV	N	Bit								US
Û			Off (0) or C	On (1)		\Rightarrow		Off (0)	

See PID1 Feedback Source (14.004).

	14.0	61	PID2 Feed	lback Squ	are Root E	nable	e 1			
RV	V	Bit								US
Û			Off (0) or C	On (1)		\Rightarrow		Off (0)	

See PID1 Feedback Square Root Enable 1 (14.060)


	14.0	62	PID1 Feed	lback Squ	are Root E	nable	2			
RV	N	Bit								US
Û			Off (0) or C	n (1)		\Rightarrow		Off (0)	

See PID1 Feedback Output Scaling (14.058).

			_							_		
Safety		Product	System	l Mechanical	Electrical	Gettina			Technical	Component		UL
	Introduction			Leader Hadean	Landa Hallanda		Optimization	Parameters	dete		Diagnostics	1.6
information		Information	design	Installation	Installation	started			data	sizing	. 5	Information

9.14 Menus 15, 16 and 17: Option module set-up

Figure 9-25 Location of option module slots and their corresponding menu numbers

- 1. Solutions Module Slot 1 Menu 15
- 2. Solutions Module Slot 2 Menu 16
- 3. Solutions Module Slot 3 Menu 17

9.14.1 Parameters common to all categories

Pa	arameter	Range(♀)	Default(⇔)			Тур	е		
mm.001 Module ID)	0 to 65535		RO I	Num	ND	NC	PT	
mm.002 Software	Version	00.00.00.00 to 99.99.99.99		RO	Ver	ND	NC	PT	
mm.003 Hardware	Version	0.00 to 99.99		RO I	Num	ND	NC	PT	
mm.004 Serial Nur	mber LS	0 to 9999999		RO I	Num	ND	NC	PT	
mm.005 Serial Nur	mber MS	0 10 9999999		RO I	Num	ND	NC	PT	
mm.006 Module St	tatus	-2 to 3		RO I	Num	ND	NC	PT	
mm.007 Module R	eset	Off (0) to On (1)	Off (0)	RW	Bit		NC		

The option module ID indicates the type of module that is installed in the corresponding slot. See the relevant option module user guide for more information regarding the module.

Option module ID	Module	Category
0	No module installed	
209	SI-I/O	Automation (I/O Expansion)
311	MCi200	
310	MCi210	Automation (Applications)
304	SI-Applications Plus	
443	SI-PROFIBUS	
447	SI-DeviceNet	
448	SI-CANopen	Fieldbus
433	SI-Ethernet	1 ICIUDUS
434	SI-PROFINET V2	
431	SI-EtherCAT	
105	SI-Encoder	Feedback
106	SI-Universal Encoder	1 GGUDACK
0*	SI-Safety	Safety

^{*} There is no communication between the SI-Safety option module and the host drive via the option module connector, this is why the SI-Safety module ID is displayed as zero.

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
--------------------	--------------	---------------------	---------------	----------------------------	----------------------------	--------------------	--------------	------------	----------------	------------------	-------------	-------------------

9.15 Menu 18: Application menu 1

	Parameter	Range(‡)	Default(⇔)			Ту	pe	
18.001	Application Menu 1 Power-down Save Integer	-32768 to 32767	0	RW	Num			PS
18.002 to 18.010	Application Menu 1 Read-only Integer	-32768 to 32767		RO	Num	ND	NC	US
18.011 to 18.030	Application Menu 1 Read-write Integer	-32768 to 32767	0	RW	Num			US
18.031 to 18.050	Application Menu 1 Read-write bit	Off (0) or On (1)	Off (0)	RW	Bit			US
18.051 to 18.054	Application Menu 1 Power-down Save long Integer	-2147483648 to 2147483647	0	RW	Num			PS

RW	Read / Write	RO	Read only	Num	Number parameter	Bit	Bit parameter	Txt	Text string	Bin	Binary parameter	FI	Filtered
ND	No default value	NC	Not copied	PT	Protected parameter	RA	Rating dependent	US	User save	PS	Power-down save	DE	Destination

9.16 Menu 19: Application menu 2

	Parameter	Range(\$)	Default(⇔)			Ту	эе	
19.001	Application Menu 2 Power-down Save Integer	-32768 to 32767	0	RW	Num			PS
19.002 to 19.010	Application Menu 2 Read-only Integer	-32768 to 32767		RO	Num	ND	NC	US
19.011 to 19.030	Application Menu 2 Read-write Integer	-32768 to 32767	0	RW	Num			US
19.031 to 19.050	Application Menu 2 Read-write bit	Off (0) or On (1)	Off (0)	RW	Bit			US
19.051 to 19.054	Application Menu 2 Power-down Save long Integer	-2147483648 to 2147483647	0	RW	Num			PS

RW	Read / Write	RO	Read only	Num	Number parameter	Bit	Bit parameter	Txt	Text string	Bin	Binary parameter	FI	Filtered
ND	No default value	NC	Not copied	PT	Protected parameter	RA	Rating dependent	US	User save	PS	Power-down save	DE	Destination

9.17 Menu 20: Application menu 3

	Parameter	Range(‡)	Default(⇔)			Туре	
20.001 to 20.020	Application Menu 3 Read-write Integer	-32768 to 32767	0	RW	Num		
20.021 to 20.040	Application Menu 3 Read-write Long Integer	-2147483648 to 2147483647	0	RW	Num		

RW	Read / Write	RO	Read only	Num	Number parameter	Bit	Bit parameter	Txt	Text string	Bin	Binary parameter	FI	Filtered
ND	No default value	NC	Not copied	PT	Protected parameter	RA	Rating dependent	US	User save	PS	Power-down save	DE	Destination

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
--------------------	--------------	------------------------	---------------	----------------------------	----------------------------	--------------------	--------------	------------	-------------------	------------------	-------------	-------------------

9.18 Menu 22: Additional Menu 0 set-up

The parameters in this menu are used to set up which parameters are shown in Menu 0.

Each parameter is used to set up the equivalent parameter in Menu 0, for example Pr **00.001** Set-up (22.001) is used to set up which parameter is shown in Menu 0 Parameter 1 (00.001), etc. 80 selectable Menu 0 parameters (**00.001** to **00.080**) and equivalent set-up parameters (**22.001** to **22.080**) are provided. When a Menu 0 set-up parameter is set to **00.000** or a value that is not a valid parameter outside Menu 0, the equivalent Menu 0 parameter is not visible.

	_		Default(⇔)		Î		_		
	Parameter	Range(३)	M600 / M701	M700			Тур	е	
22.001	Parameter 00.001 Set-up		03.005		RW	Num		PT	US
22.002	Parameter 00.002 Set-up		03.006		RW	Num		Pī	US
22.003	Parameter 00.003 Set-up		03.009		RW	Num		PT	US
22.004	Parameter 00.004 Set-up		03.005		RW	Num		PT	US
22.005	Parameter 00.005 Set-up		05.002		RW	Num		РΊ	US
22.006	Parameter 00.006 Set-up		03.003		RW	Num		PT	US
22.007	Parameter 00.007 Set-up		03.004		RW	Num		РΊ	US
22.008	Parameter 00.008 Set-up		03.007		RW	Num		PT	US
22.009	Parameter 00.009 Set-up		03.008		RW	Num		РТ	US
22.010	Parameter 00.010 Set-up		03.010		RW	Num		PT	US
22.011	Parameter 00.011 Set-up		05.001		RW	Num		РТ	US
22.012	Parameter 00.012 Set-up		04.001		RW	Num		РТ	US
22.013	Parameter 00.013 Set-up		04.002		RW	Num		PΤ	US
22.014	Parameter 00.014 Set-up		05.003		RW	Num		PΤ	US
22.015	Parameter 00.015 Set-up		03.001		RW	Num		РΊ	US
22.016	Parameter 00.016 Set-up		03.002		RW	Num		РΊ	US
22.017	Parameter 00.017 Set-up		04.008		RW	Num		PΊ	US
22.018	Parameter 00.018 Set-up		00.000		RW	Num		PT	US
22.019	Parameter 00.019 Set-up		07.011		RW	Num		РТ	US
22.020	Parameter 00.020 Set-up		07.014		RW	Num		PT	US
22.021	Parameter 00.021 Set-up		07.015		RW	Num		РΊ	US
22.022	Parameter 00.022 Set-up		00.000		RW	Num		PΤ	US
22.023	Parameter 00.023 Set-up		00.000		RW	Num		PΊ	US
22.024	Parameter 00.024 Set-up		00.000		RW	Num		PΤ	US
22.025	Parameter 00.025 Set-up	00.000 to 59.999	00.000		RW	Num		PΤ	US
22.026	Parameter 00.026 Set-up	00.000 to 39.999	00.000		RW	Num		PΤ	US
22.027	Parameter 00.027 Set-up		00.000		RW	Num		РΊ	US
22.028	Parameter 00.028 Set-up		00.000		RW	Num		РТ	US
22.029	Parameter 00.029 Set-up		11.036		RW	Num		РТ	US
22.030	Parameter 00.030 Set-up		11.042		RW	Num		РТ	US
22.031	Parameter 00.031 Set-up		11.033		RW	Num		РТ	US
22.032	Parameter 00.032 Set-up		11.032		RW	Num		РТ	US
22.033	Parameter 00.033 Set-up		00.000		RW	Num		РТ	US
22.034	Parameter 00.034 Set-up		11.030		RW	Num		PT	US
22.035	Parameter 00.035 Set-up		11.024	00.000	RW	Num		РТ	US
22.036	Parameter 00.036 Set-up		11.025	00.000	RW	Num		PT	US
22.037	Parameter 00.037 Set-up		11.023	24.010	RW	Num		PT	US
22.038	Parameter 00.038 Set-up		04.013		RW	Num		PT	US
22.039	Parameter 00.039 Set-up		04.014		RW	Num		PT	US
22.040	Parameter 00.040 Set-up		00.000		RW	Num		PΤ	US
22.041	Parameter 00.041 Set-up		05.018		RW	Num		PT	US
22.042	Parameter 00.042 Set-up		00.000		RW	Num		PT	US
22.043	Parameter 00.043 Set-up		00.000		RW	Num		PT	US
22.044	Parameter 00.044 Set-up		00.000		RW	Num		PT	US
22.045	Parameter 00.045 Set-up		04.015		RW	Num		PT	US
22.046	Parameter 00.046 Set-up		05.007		RW	Num		PT	US
22.047	Parameter 00.047 Set-up		00.000		RW	Num		PT	US
22.048	Parameter 00.048 Set-up		11.031		RW	Num		PT	US
22.049	Parameter 00.049 Set-up		11.044		RW	Num		PT	US
22.050	Parameter 00.050 Set-up		11.029		RW	Num		PT	US

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
--------------------	--------------	---------------------	---------------	----------------------------	----------------------------	--------------------	--------------	------------	----------------	------------------	-------------	-------------------

	Danish at an	Parass(A)	Default(⇔)				T		
	Parameter	Range(ŷ)	M600 / M701	M700			Туре		
22.051	Parameter 00.051 Set-up		10.037		RW	Num		PT	US
22.052	Parameter 00.052 Set-up		11.020	00.000	RW	Num		PT	US
22.053	Parameter 00.053 Set-up				RW	Num		РΤ	US
22.054	Parameter 00.054 Set-up				RW	Num		PT	US
22.055	Parameter 00.055 Set-up				RW	Num		PT	US
22.056	Parameter 00.056 Set-up				RW	Num		PT	US
22.057	Parameter 00.057 Set-up				RW	Num		РΤ	US
22.058	Parameter 00.058 Set-up				RW	Num		PT	US
22.059	Parameter 00.059 Set-up				RW	Num		PT	US
22.060	Parameter 00.060 Set-up				RW	Num		PT	US
22.061	Parameter 00.061 Set-up				RW	Num		PT	US
22.062	Parameter 00.062 Set-up				RW	Num		PT	US
22.063	Parameter 00.063 Set-up				RW	Num		PT	US
22.064	Parameter 00.064 Set-up				RW	Num		PT	US
22.065	Parameter 00.065 Set-up	00.000 to 59.999			RW	Num		PT	US
22.066	Parameter 00.066 Set-up	00.000 to 39.999	00.000		RW	Num		PT	US
22.067	Parameter 00.067 Set-up		00.000		RW	Num		РΤ	US
22.068	Parameter 00.068 Set-up				RW	Num		PT	US
22.069	Parameter 00.069 Set-up				RW	Num		PT	US
22.070	Parameter 00.070 Set-up				RW	Num		PT	US
22.071	Parameter 00.071 Set-up				RW	Num		РΤ	US
22.072	Parameter 00.072 Set-up				RW	Num		PT	US
22.073	Parameter 00.073 Set-up				RW	Num		РΤ	US
22.074	Parameter 00.074 Set-up				RW	Num		PT	US
22.075	Parameter 00.075 Set-up				RW	Num		РΤ	US
22.076	Parameter 00.076 Set-up				RW	Num		PT	US
22.077	Parameter 00.077 Set-up				RW	Num		PT	US
22.078	Parameter 00.078 Set-up				RW	Num		PT	US
22.079	Parameter 00.079 Set-up				RW	Num		PT	US
22.080	Parameter 00.080 Set-up				RW	Num		PT	US

RW	Read / Write	RO	Read only	Num	Number parameter	Bit	Bit parameter	Txt	Text string	Bin	Binary parameter	FI	Filtered
ND	No default value	NC	Not copied	PT	Protected parameter	RA	Rating dependent	US	User save	PS	Power-down save	DE	Destination

Safety	Introduction	Product	System	Mechanical	Electrical	Getting	Optimization	Doromotoro	Technical	Component	Diagnostics	UL
information	IIIIIOduction	Information	design	Installation	Installation	started	Optimization	Parameters	data	sizing	Diagnostics	Information

10 Technical data

10.1 Drive

10.1.1 Power and current ratings (Derating for switching frequency and temperature)

Output current derating has been applied based on Regen and switching frequency filter inductor capability

Table 10-1 Maximum permissible continuous output current @ 40 °C (104 °F) ambient

				Norma	al Duty							Heavy	Duty			
Model		ninal ing		•			ıs output g frequer		Nomina	al rating	Maximui (A) fo	-			s output g frequen	
	kW	hp	3 kHz	4 kHz	6 kHz	8 kHz	12 kHz	16 kHz	kW	hp	3 kHz	4 kHz	6 kHz	8 kHz	12 kHz	16 kHz
200 V																
03200066	1.5	2.0			8.	0			1.1	1.5			6.6	3		
03200080	2.2	3.0			11			10.2	1.5	2.0			8.0			7.5
03200106	3.0	3.0			11			10.2	2.2	3.0		10.	6		8.8	7.5
04200137	4.0	5.0			15	.5			3.0	3.0			13.	.7		
04200185	5.5	7.5			22	2			4.0	5.0			15.	.5		
05200250	7.5	10		30	١		27.6	23.7	5.5	7.5		22)		21.5	18.8
06200330	11	15		50			42.3	24.5	7.5	10			31			27
06200440	15	20		56		53	42.3	32.5	11	15		42		40	33	27.3
07200610	18.5	25		75			74.3	59.7	15	20			56			53.1
07200750	22	30		94			74.3	59.7	18.5	25		75	;		65.3	53.1
07200830	30	40		105		96	74.3	59.7	22	30		80)		65.6	53.1
08201160	37	50		149		146	125.2	93	30	40		105		103	89.3	80.5
08201320	45	60	18	0	160.2	148.8	126	93	37	50	132	126.7	114	103	89.8	80.5
09201760	55	75		192		184	128	93	45	60		176		153	110	81
09202190	75	100	25	0	218	184	128	93	55	75	19	2	180	153	110	81
10202830	90	125		250 218 312		266	194	144	75	100	28	3	264	228	170	127
10203000	110	150	35	0	313	266	194	144	90	125	30	0	264	228	171	129
400 V																
03400078	4.0	5.0		9.5	5		7.6	5.7	3.0	5.0		7.8		7.6	5.7	4.4
03400100	5.5	7.5		12		10.5	7.6	5.8	4.0	5.0	9.	5	9.2	7.7	5.7	4.4
04400150	7.5	10		16			14.6	11.1	5.5	10		15.0		14.4	11.5	9.4
04400172	11	15	24	1	21.8	19.2	14.6	11.2	7.5	10		16		14.4	11.5	9.4
05400270	15	20	30)	25.8	22.2	17.1	13.5	11	20	25.4	23.7	20.3	17.6	13.8	11.1
05400300	15	20	3′	1	30.7	26.4	18.3	14.1	15	20	30	27.9	24	21	14.9	12.2
06400350	18.5	25		38			31	24.3	15	25		34		30	23	18.5
06400420	22	30		46		41	31	24.5	18.5	30	40)	35	30	23	18.5
06400470	30	40	60	57	48	41	31	24.5	22	30	46	42	35	30	23	18.5
07400660	37	50		70			63	53.6	30	50	66	3	57	48	41	34
07400770	45	60		94		80.6	63	53.6	37	60	70)	59	51	44	37
07401000	55	75	11	2	95.2	80.6	63	53.8	45	75	96	88	73	61	48	41
08401340	75	100		155		132	98	77	55	100	124	130	109	91	72	57
08401570	90	125	18	0	169	142	106.7	77	75	125	156	143	121	104	80.1	65
09402000	110	150	20	0	192	159	108	77	90	150	18	0	157	130	92	65
09402240	132	200	255	231	192	160	109	77	110	150	200	190	157	130	92	65
10402700	160	250	30	0	285	238	173	124	132	200	27	0	237	200	147	108
10403200	200	300	350	339	285	238	173	126	160	250	300	282	237	202	147	109

Safety information	Introduct			System design	Mechanic Installatio			Getting started	Optimizatio	on Paran		chnical (data	Componer sizing	Diagno	ostics	UL formation
				Norma	al Duty							Heavy	Duty			
Model		ninal ing		•	ssible co lowing s			t current ncies	Nomina	al rating			ssible co lowing s			
	kW	hp	3 kHz	4 kHz	6 kHz	8 kHz	12 kHz	16 kHz	kW	hp	3 kHz	4 kHz	6 kHz	8 kHz	12 kHz	16 kHz
11403770	225	350	437	415	336	272			185	300	377	372	296	245		
11404170	250	400	460	415	336	272			200	350	415	372	296	245		
11404640	280	400	460	415	336	272			250	400	415	372	296	245		
575 V																
06500150	11.0	15.0			17			14.8	7.5	10			15			11.6
06500190	15.0	20.0		22)		20.5	15	11	15		19	9		15.4	11.6
06500230	18.5	25.0		27		26.2	20	16	15	20		22		20	15.4	12.8
06500290	22.0	30.0	34	4	31	26.2	20	16.8	18.5	25	2	7	23.8	20	15.4	12.8
06500350	30.0	40.0	43	39.6	31	26.2	20	16.8	22	30	34	29.8	23.8	20	15.4	13
07500440	45	50	52	2	51.8	40.2	27.7	21.2	30	40	4	3	39.2	30.8	21.6	16.7
07500550	55	60	6:	3	51.8	40.2	27.7	21.2	37	50	5:	2	39.2	30.8	21.6	17.1
08500630	75	75		85	•	73.1	49.7	37.8	45	60		63	•	53.3	37.2	28.4
08500860	90	100	10	00	91.8	73.1	49.7	37.8	55	75	8	5	67.1	53.3	37.8	28.4
09501040	110	125					71	54	75	100		100		85	61	47
09501310	110	150	14			100	70	54	90	125	12	25	106	85	61	47
10501520	130	200	192	168	126	100	70	54	110	150	144	138	106	85	61	47
10501900	150	200	19)2	152	116	76	54	132	200	190	186	137	106	70	51
11502000	185	250	248	220					150	200	200	184				
11502540	225	300	265	220					185	250	221	184				
11502850	250	350	265	220					225	300	221	184				
690 V		ı							•	ı	<u> </u>					
07600190	18.5	25			22			21.2	15	20			19			16.7
07600240	22	30	1	27	,		27.9	21.2	18.5	25		22	2		21.8	16.6
07600290	30	40	1	36	3		28.1	21.2	22	30		2	7		21.8	16.5
07600380	37	50	1	43		40.5	28.1	21.2	30	40		36		30.8	21.7	16.7
07600440	45	60	52	2	51.5	40.6	28.1	21.2	37	50	4	3	38.7	30.8	21.6	16.7
07600540	55	75	6	3	51.8	40.6	28.1	21.2	45	60	5	2	39	31	21.6	16.7
08600630	75	100		85	<u> </u>	72.2	49.7	37.8	55	75		63	1	53.3	37	28.4
08600860	90	125	10	00	91.8	72.4	49.7	37.8	75	100	8	5	67.1	53.3	37	28.4
09601040	110	150	1	125	-	100	71	54	90	125		100	!	85	61	47
09601310	132	175	14	14	126	100	71	54	110	150	12	25	105	85	62	47
10601500	160	200	168	169	126	100	71	55	132	175	144	138	105	86	62	47
10601780	185	250	19)2	154	114	75	55	160	200	16	88	137	105	69	52
11602100	200	250	225	220					185	250	210	184				
11602380	250	300	265	220					200	250	221	184				
11602630	280	400	265	220					250	300	221	184				

Safety	Introduction	Product	-,	Mechanical	Electrical	Getting	Optimization	Parameters	Technical	Component	Diagnostics	UL Information
information		Information	design	Installation	Installation	started			data	sizing	g	Information

Table 10-2 Maximum permissible continuous output current @ 40 °C (104 °F) ambient with high IP insert installed

			Norma	l Duty					Heavy	y Duty		
Model	Maxim	um permi			•	` '	Maxi	•	issible cor ollowing sw		utput currer	nt (A)
	3 kHz	4 kHz	6 kHz	8 kHz	12 kHz	16 kHz	3 kHz	4 kHz	6 kHz	8 kHz	12 kHz	16 kHz
200 V	•		<u>I</u>	1							•	•
03200066			8	.0					6	.6		
03200080			11.0			9.7			8.0			6.9
03200106	11.9	11.1	10.0	9.0	6.4	4.7	10.6 10.4 9.3 7.8					6.8
04200137	14	1.5	13.5	12.2	10.5	9.6	13.7 13.5 12.2 10.5					9.6
04200185	14	1.5	13.5	12.2	10.5	9.6	14	1.5	13.5	12.2	10.5	9.6
05200250	25.2	24.9	24.3	23.7	22.5	21.6	25.0	24.8	24.3	23.8	22.5	20.0
400 V		•			•				•			•
03400078	8	.3	7.6	6.9	6.0	5.2	7	.8	7.6	6.9	5.3	4.0
03400100	8	.3	7.6	6.9	6.0	5.2	8	.3	7.6	6.9	5.3	4.0
04400150		8	.6		8.4	6.9	8.6 8.4					6.9
04400172		8	.6		8.4	6.9	8.6 8.4					6.9
05400270	15.6	14.4	12.6	11.4	9.6	8.7	15.7	14.6	12.7	11.3	9.7	8.6
05400300	19.5	18.9	17.7	16.4	14.0	11.8	19.5	18.9	17.7	16.2	13.8	11.7

Table 10-3 Maximum permissible continuous output current @ 50 °C (122 °F)

			Norma	al Duty					Heav	y Duty		
Model	Maxir	•	issible con Ilowing sw		utput curre equencies	ent (A)	Maxir	•	issible cor bllowing sw		utput curre equencies	ent (A)
	3 kHz	4 kHz	6 kHz	8 kHz	12 kHz	16 kHz	3 kHz	4 kHz	6 kHz	8 kHz	12 kHz	16 kHz
200 V		•	•					•	•	•		
03200066			8	.0					6	.6		
03200080		1	1		10.5	9.1			8.0			7.0
03200106		1	1		10.5	9.1		10.6		9.6	8.1	7.0
04200137			15	5.5	1				13	3.7	· ·	
04200185			22			20.2	15.5					14.8
05200250		30		29.7	25.2	21.6	22 19.8					17.3
06200330		50		49	38	30		3	31		29	24.6
06200440		56		49	38	30.2	4	12	41	36	29	24.6
07200610		7	75		59.7	48.8		Ę	56		53.1	43.2
07200750	9	94	92.1	80	59.7	48.9		75		69.8	53.1	43.2
07200830	1	05	92.4	80	59.7	49.1		80		69.7	53.1	43.2
08201160	1.	49	147	133	113	84	10	05	104	95.1	81.8	72
08201320	180	167	148	133	113	84	125	117	104	95.1	81.8	72
09201760	1	92	197	168	117	84	17	76	165	140	100	72
09202190	237	221	197	168	117	85	19	92	166	140	101	72
10202830	312	302	266	241	176	130	283	279	241	207	153	114
10203000	320	302	266	241	176	130	300	279	243	207	153	114

Safety information	Introduction	Product Information			Electrical nstallation	Getting started O	ptimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
			Norm	al Duty					Heav	vy Duty		
Model	Max	imum perm for the fo		ntinuous o vitching fre	•	` ,	Maxi	•		ntinuous o witching fr	•	ent (A)
	3 kHz	4 kHz	6 kHz	8 kHz	12 kHz	16 kHz	3 kHz	4 kHz	6 kHz	8 kHz	12 kHz	16 kHz
400 V	-	<u>'</u>	1	<u>'</u>	•		-	<u> </u>	-		1	1
03400078		9.5	9.3	8.5	6.9	5.1		7.8		7.0	5.1	3.9
03400100	11.2	10.5	9.3	8.5	6.9	5.2	9	9.5	8.3	7.0	5.2	3.9
04400150		16	16	15.8	12.2	9.3		15	14.8	13.2	10.6	8.6
04400172	17.5	17	16.3	15.8	12.2	9.3		16	14.8	13.2	10.6	8.6
05400270	2	25.5	23.6	20.4	15.6	12.3	23.5	21.6	18.6	16.2	12.7	10
05400300	2	25.5	2	3.6	15.9	12.3		24	21.9	19.2	13.8	10.5
06400350		38		37	28	21.4		34	32	27	21	16.5
06400420		46	43	36.5	27.4	21.4	40	38	32	27	21	16.5
06400470	58	52	43	37	28	21.4	42	38	32	27	21	16.5
07400660		70		73.5	57.7	49		66	55	45	38	30
07400770		94	86.5	73.3	58.3	49		70	57	48	41	34
07401000	112	109	87.4	72.8	58.3	49.3	91	80	65	55	44	37
08401340		155	146	123	93	69	124	120	99	85	69	55
08401570		180	146	123	93.8	69	146	132	110	94.2	73.8	58
09402000	200	213	175	144	97	69	180	174	143	119	83	58
09402240	237	213	176	144	98	69	193	175	143	119	83	58
10402700	300	300	259	217	154	112	270	259	214	182	131	97

-			Norma	al Duty					Heav	y Duty		
Model	Maxii	•	issible cor Ilowing sv		utput curre equencies	ent (A)	Maxii	•	issible cor bllowing sv		utput curre equencies	nt (A)
	3 kHz	4 kHz	6 kHz	8 kHz	12 kHz	16 kHz	3 kHz	4 kHz	6 kHz	8 kHz	12 kHz	16 kHz
575 V	•	•			•	•		•	•			
06500150			17			13.4		1	15		14	10.3
06500190		2	22		17.8	13.4		1	19		14	10.3
06500230		27		23.5	17.8	15	2	22	21.6	19	14	11.5
06500290	3	34	28.2	23.5	18	15	2	27	22	19	14	11.6
06500350	41.7	36.1	28	23.7	18	15	31.2	27.3	21.8	19	14	11.6
07500440	Ę	52	46.7	35.8	24.8	19	4	13	35.2	28.1	19.3	15
07500550	6	33	46.7	35.8	24.8	19	52	48.4	35.2	28.1	19.3	15
08500630	3	36	76.7	64.5	44.3	31.3	6	63	61.1	48.5	33.4	24.9
08500860	97.2	90.7	76.7	64.8	44.3	31.3	85	80.8	61.1	49	33.4	24.9
09501040	1	25	114	90	62	48	1	00	97	77	55	42
09501310	1	44	114	90	62	48	125	126	97	77	55	42
10501520	184	154	114	90	62	48	144	126	97	78	55	43
10501900	192	196	134	102	66	48	190	171	124	95	63	46
11502000	226	198					200	166				
11502540	241	198					200	166				
11502850	241	198					200	166				

Safety information	Introduction	Product Information				Getting started Op	timization P	arameters	Technical data	Component sizing	Diagnostics	UL Information
			Norn	nal Duty					Heav	y Duty		
Model	Max	kimum pern for the f		ntinuous o witching fr	•	` ,	Maxii	•			output curre equencies	∍nt (A)
	3 kHz	4 kHz	6 kHz	8 kHz	12 kHz	16 kHz	3 kHz	4 kHz	6 kHz	8 kHz	12 kHz	16 kHz
690 V		<u>'</u>			1	1		•	<u> </u>	<u>'</u>	1	
07600190			22			19			19			14.5
07600240			27		24.8	19			22		19.4	14.5
07600290		36		35.8	24.8	19		27		27.7	19.4	14.5
07600380		43		35.8	24.8	19	3	36	35.3	27.7	19.4	14.5
07600440		52	46.7	35.8	25	19	4	13	35.6	27.7	19.4	14.5
07600540		63	46.7	35.8	25	19	52	48.1	35.6	27.7	19.4	14.6
08600630		85	76.7	64.5	44.3	31.3	6	3	61.1	48.2	33.4	24.9
08600860	97.2	90.7	76.7	64.8	44.3	31.3	85	80.8	61.1	48.2	33.5	24.9
09601040		125	114	90	62	48	1	00	97	77	55	42
09601310	144	153	113	89	62	48	125	127	97	77	55	42
10601500	168	153	114	89	62	48	144	128	96	78	56	42
10601780	192	195	134	102	67	48	168	171	125	94	62	44
11602100	205	198					200	166				
11602380	241	198					200	166				

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
--------------------	--------------	---------------------	---------------	----------------------------	----------------------------	--------------------	--------------	------------	----------------	------------------	-------------	-------------------

10.1.2 Power dissipation

Table 10-4 Losses @ 40 °C (104 °F) ambient

				Norma	al Duty							Heav	y Duty			
Model	Nomina	al rating	Drive loss	es (W) tak	ng into ac		current de	rating for	Nomina	al rating	Drive losse	es (W) taking	g into accou		nt derating	g for the
	kW	hp	3 kHz	4 kHz	6 kHz	8 kHz	12 kHz	16 kHz	kW	hp	3 kHz	4 kHz	6 kHz	8 kHz	12 kHz	16 kHz
200 V											KIL	NI IZ	KIL	KIL	2	KIIZ
03200066	1.5	2	100	102	107	113	122	133	1.1	1.5	89	91	94	99	108	116
03200080	2.2	3	123	126	133	139	151	146	1.5	2	97	99	105	109	118	111
03200106	3	3	136	141	149	158	168	157	2.2	3	115	118	126	134	124	116
04200137	4	5	180	187	201	216	244	273	3	3	145	151	163	174	198	221
04200137	5.5	7.5	239	248	266	284	308	314	4	5	185	192	207	221	237	241
05200250	7.5	10	291	302	324	344	356	342	5.5	7.5	245	254	272	288	284	282
06200330	11	15	394	413	452	490	480	485	7.5	10	277	290	316	342	382	386
		20	463			522							417	410	388	392
06200440	15			484	528		481	486	11	15	366	382				
07200610	18.5	25	570	597	650	703	885	894	15	20	466	488	532	575	666	715
07200750	22	30	718	751	815	881	890	899	18.5	25	570	597	650	703	710	717
07200830	30	40	911	951	1004	911	920	929	22	30	634	663	720	755	763	770
08201160	37	50	1433	1536	1765	1943	1962	1982	30	40	1105	1193	1343	1373	1387	1401
08201320	45	60	1753	1894	1914	1985	2005	2025	37	50	1269	1306	1349	1372	1386	1400
09201760A	55	75	2170	2312	2596	2448	2160	2031	45	60	1701	1822	2065	2022	1881	1820
09202190A	75	100	2754	2822	2623	2448	2156	2034	55	75	2160	2227	2107	2025	1874	1821
09201760D	55	75	1482	1624	1909	1878	1773	1748	45	60	1157	1278	1521	1555	1548	1571
09202190D	75	100	1871	1971	1928	1877	1770	1751	55	75	1461	1553	1550	1558	1543	1572
10202830D	90	125	2672	2867	3123	2952	2701	2554	75	100	2240	2413	2561	2494	2376	2303
10203000D	110	150	3016	3230	3126	2957	2706	2554	90	125	2394	2576	2561	2494	2389	2323
400 V																
03400078	4	5	145	158	186	212	201	197	3	5	115	125	145	161	166	165
03400100	5	7.5	163	179	209	208	201	200	4	5	138	151	163	163	166	165
04400150	7.5	10	225	244	283	322	325	310	5.5	10	189	205	238	262	274	286
04400172	11	15	283	307	325	329	325	315	7.5	10	210	227	249	262	274	286
05400270	15	20	324	353	356	355	359	362	11	20	276	282	285	290	301	310
05400300	15	20	332	367	434	441	417	424	15	20	322	333	352	374	372	439
06400350	18.5	25	417	456	532	613	652	645	15	25	389	424	498	496	502	513
06400420	22	30	515	561	657	651	646	650	18.5	30	455	497	487	486	495	513
06400470	30	40	656	659	650	646	643	649	22	30	500	496	487	486	495	500
07400660	37	60	830	907	1062	1218	1230	1242	30	50	692	758	773	763	771	778
07400770	45	60	999	1088	1264	1241	1253	1266	37	60	812	802	800	811	819	827
07401000	55	75	1152	1247	1218	1170	1182	1194	45	75	1017	968	936	907	916	925
08401340	75	100	1652	1817	2154	2121	2142	2164	55	100	1374	1509	1521	1510	1525	1540
08401570	90	150	2004	2191	2333	2279	2302	2325	75	125	1541	1670	1674	1673	1690	1707
09402000A	110	150	2710	2989	3075	2992	2842	2833	90	150	2136	2370	2492	2475	2501	2538
09402240A	132	200	3191	3143	3063	3000	2856	2828	110	150	2532	2511	2489	2474	2498	2537
09402000D	110	150	1968	2247	2448	2488	2507	2590	90	150	1555	1790	1995	2071	2216	2330
09402240D	132	200	2303	2358	2439	2494	2519	2586	110	150	1831	1891	1993	2070	2214	2329
		250	3582	3954	4148					200	2923	3242	3401			3469
10402700D	160	230	3302	3934	4140	4034	3939	3843	132	200	2923	3242	3401	3391	3438	3403

Safety information	Introduc	rti∩n i	Product ormation	System design	Mechani Installati		ctrical allation	Getting started	Optimiz	ation	Parameters	Technical data	Component sizing	Diagnos	tics	UL ormation
				Norma	al Duty							Heav	y Duty			
Model	Nomina	al rating	Drive loss	es (W) tak	ing into ac		current d	erating for	Nomina	al rating	Drive loss	ses (W) takin	g into account given condi	-	nt derating	g for the
	kW	hp	3 kHz	4 kHz	6 kHz	8 kHz	12 kHz	16 kHz	kW	hp	3 kHz	4 kHz	6 kHz	8 kHz	12 kHz	16 kHz
11403770D	225	350	4576	4708	4444	4246			185	300	3905	4200	3960	3907		
11404170D	250	400	4843	4708	4444	4246			200	350	4325	4200	3960	3907		
11404640D	280	400	4843	4708	4444	4246			250	400	4325	4200	3960	3907		
575 V												•				
06500150	11	15	284	315	376	438	563	569	7.5	10	265	294	351	410	501	506
06500190	15	20	362	399	484	569	575	580	11	15	317	350	418	496	501	506
06500230	18.5	25	448	505	596	682	689	696	15	20	382	421	508	523	641	648
06500290	22	30	623	712	810	822	830	839	18.5	25	533	610	628	635	641	648
06500350	30	40	798	836	813	823	831	840	22	30	546	624	622	627	633	640
07500440	45	50	1004	1139	1358	1262	1275	1287	30	40	817	929	1028	967	977	986
07500550	55	60	1248	1375	1209	1122	1133	1145	37	50	886	1002	914	863	872	880
08500630	75	75	1861	2180	2814	2982	3012	3042	45	60	1345	1585	2136	2284	2307	2330
08500860	90	100	2374	2753	2947	2963	2993	3023	55	75	1813	2174	2212	2218	2240	2263
09501040A	110	125	1977	2247	2787	2723	2731	2859	75	100	1601	1830	2288	2305	2422	2603
09501310A	110	150	2410	2734	2810	2692	2697	2859	90	125	2034	2316	2332	2302	2412	2607
09501040D	110	125	1508	1778	2318	2354	2476	2663	75	100	1221	1450	1908	1999	2201	2428
09501310D	110	150	1823	2146	2336	2329	2446	2663	90	125	1537	1820	1944	1997	2193	2432
10501520D	130	200	3137	2923	2696	2616	2654	2831	110	150	2245	2324	2253	2243	2373	2583
10501900D	150	200	2797	3209	3072	2946	2990	3189	132	200	2605	2933	2750	2713	2818	3076
11502000D	185	250	3999	4097					150	200	3204	3438				
11502540D	225	300	4296	4097					185	250	3544	3438				
11502850D	250	350	4296	4097					225	300	3544	3438				
690 V		i i								•	-	1				
07600190	18.5	25	428	491	617	743	793	970	15	20	360	413	519	625	683	790
07600240	22	30	551	631	791	952	962	971	18.5	25	446	513	644	776	784	792
07600290	30	40	660	754	941	1129	1140	1152	22	30	533	610	765	920	929	938
07600380	37	50	854	971	1206	1271	1284	1297	30	40	697	796	993	966	976	985
07600440	45	60	985	1117	1350	1275	1288	1301	37	50	817	929	1015	967	977	986
07600540	55	75	1248	1375	1209	1122	1133	1145	45	60	888	1004	909	869	878	886
08600630	75	100	1861	2180	2814	2945	2974	3004	55	75	1345	1585	2136	2284	2307	2330
08600860	90	125	2374	2753	2947	2935	2964	2994	75	100	1813	2174	2212	2218	2240	2263
09601040A	110	150	2213	2548	3218	3155	3266	3465	90	125	1798	2083	2653	2714	2910	3161
09601310A	132	175	2797	3211	3232	3155	3267	3474	110	150	2281	2631	2677	2711	2917	3174
09601040D	110	150	1677	2012	2682	2743	2979	3246	90	125	1367	1652	2222	2369	2663	2968
09601310D	132	175	2095	2509	2693	2743	2981	3254	110	150	1714	2064	2241	2366	2669	2980
10601500D	160	200	2882	3270	3083	3052	3192	3472	132	175	2441	2604	2571	2648	2876	3128
10601780D	185	250	3132	3649	3667	3495	3633	3993	160	200	2774	3242	3265	3237	3442	3839
11602100D	200	250	3893	4497					185	200	3670	3814				
11602380D	250	300	4640	4497					200	250	3865	3814				
11602630D	280	400	4684	4540					250	300	3865	3814				

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
mormation		mormation	design	mstallation	mstallation	Started			uata	Sizirig	· ·	inionnation

Table 10-5 Losses @ 40 °C (104 °F) ambient with high IP insert installed

			Norm	al Duty					Heav	y Duty		
Model	Drive I	٠,	taking int		ration any iditions	current	Drive	• •	taking in		eration any nditions	current
	3 kHz	4 kHz	6 kHz	8 kHz	12 kHz	16 kHz	3 kHz	4 kHz	6 kHz	8 kHz	12 kHz	16 kHz
200 V	_	•	•					•				
03200066	100	102	107	113	122	133	89	91	94	99	108	116
03200080	123	126	133	140	158	157	97	99	105	109	118	112
03200106	128	124	122	118	98	84	115	119	127	122	120	122
04200137	145	151	151	146	142	146	153	160	161	155	152	155
04200185	215	205	194	189	187	199	185	192	202	193	191	200
05200250	194	201	212	222	240	262	195	201	214	226	247	256
400 V	_	•	•		•			•				
03400078	118	134	155	173	221	267	115	126	155	173	195	205
03400100	118	134	155	173	221	267	112	126	155	173	195	205
04400150	105	114	132	153	197	207	108	118	136	156	202	214
04400172	101	111	131	152	197	207	105	114	133	157	202	214
05400270	118	119	124	132	152	183	120	123	129	137	162	187
05400300	159	174	200	225	268	304	159	176	210	239	295	310

Safety information Introduction Product Information System design Installation Installation Installation Optimization Parameters Technical data Sizing Diagnostics UL Information

			Norm	al Duty					Heav	y Duty		
Model	Drive los			account a n condition	iny curren ons	t derating	Drive lo			account a	ny current ons	derating
	3 kHz	4 kHz	6 kHz	8 kHz	12 kHz	16 kHz	3 kHz	4 kHz	6 kHz	8 kHz	12 kHz	16 kHz
00 V												
03200066	100	102	107	113	122	133	89	91	94	99	108	116
03200080	123	126	133	139	144	139	97	99	105	109	118	113
03200106	136	140	143	147	151	150	115	118	126	121	117	116
04200137	180	187	201	216	253	297	145	151	163	174	198	228
04200185	214	223	244	265	312	334	185	192	207	217	230	247
05200250	291	302	324	341	325	312	245	254	272	268	261	264
06200330	394	413	452	480	431	594	277	290	316	342	346	352
06200440	463	484	510	483	432	451	366	382	389	369	341	353
07200610	570	597	650	703	710	717	466	488	532	575	581	587
07200750	718	751	799	750	758	765	570	597	650	654	661	667
07200830	898	898	805	751	759	766	634	663	705	653	660	666
08201160	1433	1536	1741	1770	1788	1806	1105	1193	1228	1277	1290	1303
08201320	1737	1740	1759	1771	1789	1807	1202	1206	1228	1278	1291	1304
09201760A	2170	2312	2354	2256	2010	1910	1701	1822	1943	1867	1757	1700
09202190A	2405	2368	2358	2245	2015	1922	2063	2029	1954	1868	1763	1701
09201760D	1482	1624	1738	1738	1658	1651	1157	1278	1435	1442	1453	1474
09202190D	1639	1662	1740	1729	1662	1661	1397	1418	1443	1443	1457	1476
10202830D	2625	2641	2625	2671	2490	2379	2240	2375	2326	2271	2185	2141
10203000D	2629	2643	2629	2678	2495	2374	2394	2375	2350	2275	2187	2141
00 V												
03400078	145	158	175	194	225	225	115	125	148	160	166	172
03400100	152	160	175	194	225	230	138	152	158	160	170	172
04400150	213	227	262	300	323	325	189	205	240	253	276	297
04400172	212	227	262	300	318	321	211	226	240	253	276	297
05400270	275	300	326	326	328	330	255	257	262	268	277	274
05400300	273	302	334	395	362	370	258	286	321	342	345	323
06400350	417	456	532	597	589	568	389	424	455	446	458	452
06400420	515	561	589	580	571	568	455	450	445	437	452	446
06400470	604	601	582	583	581	567	457	449	445	437	452	446
07400660	830	907	1062	1141	1152	1164	692	758	751	725	732	740
07400770	999	1087	1163	1138	1149	1161	808	804	779	773	781	789
07401000	1136	1200	1118	1074	1085	1096	922	878	838	828	836	845
08401340	1652	1815	2016	1970	1990	2010	1410	1392	1391	1432	1446	1461
08401570	1957	2114	1998	1979	1999	2019	1564	1539	1518	1531	1546	1562
09402000A	2710	2872	2799	2737	2639	2652	2136	2290	2289	2305	2342	2399
09402240A	2926	2870	2814	2737	2660	2665	2294	2300	2294	2300	2340	2404
09402000D	1968	2163	2239	2287	2338	2434	1555	1732	1841	1936	2084	2210
09402240D	2118	2161	2250	2286	2356	2446	1665	1739	1845	1933	2082	2214
10402700D	3582	3681	3765	3700	3597	3591	2923	3105	3081	3125	3165	3262
10403200D	3598	3676	3776	3694	3625	3589	3062	3105	3087	3131	3168	3300
11403770D	4329	4228	3988	3843			3905	3876	3699	3634		
11404170D	4329	4228	3988	3843			3943	3876	3699	3634		
11404640D	4329	4228	3988	3843			3943	3876	3699	3634		

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
--------------------	--------------	---------------------	---------------	----------------------------	----------------------------	--------------------	--------------	------------	----------------	------------------	-------------	-------------------

			Norm	al Duty					Heav	y Duty		
Model	Drive loss		-	account a n conditio	iny current ons	derating	Drive los		-	account a	iny current ons	deratin
	3 kHz	4 kHz	6 kHz	8 kHz	12 kHz	16 kHz	3 kHz	4 kHz	6 kHz	8 kHz	12 kHz	16 kH
575 V		•								•		
06500150	284	315	376	438	563	515	265	294	351	410	466	449
06500190	362	399	482	569	500	519	317	350	418	496	455	449
06500230	448	505	596	612	613	652	382	421	478	497	583	582
06500290	623	712	737	737	747	749	533	573	581	603	583	587
06500350	774	763	734	742	748	750	501	573	568	595	576	571
07500440	988	1115	1225	1144	1155	1167	817	923	923	898	907	916
07500550	1225	1228	1098	1030	1040	1051	923	914	828	809	817	825
08500630	1850	2172	2540	2672	2699	2726	1345	1585	2292	2242	2264	2287
08500860	2090	2291	2540	2684	2711	2738	1845	2029	2039	2047	2067	2088
09501040A	1977	2247	2538	2456	2495	2699	1601	1830	2139	2122	2258	2455
09501310A	2410	2734	2544	2456	2482	2676	2034	2222	2143	2128	2258	2453
09501040D	1508	1778	2118	2133	2270	2518	1221	1450	1789	1846	2058	2295
09501310D	1823	2146	2122	2133	2259	2498	1537	1748	1792	1852	2058	2293
10501520D	2841	2654	2448	2392	2447	2652	2220	2112	2077	2083	2222	2452
10501900D	2797	3141	2743	2672	2766	3036	2605	2686	2516	2496	2651	2933
11502000D	3678	3532					3036	2985				
11502540D	3678	3532					3036	2985				
11502850D	3678	3632					3036	2985				
90 V	•	•	•					•	•		•	
07600190	428	491	617	743	750	758	360	413	519	625	631	638
07600240	551	631	791	958	968	977	446	513	644	776	784	792
07600290	660	754	944	1144	1155	1167	533	610	765	809	817	825
07600380	854	965	1206	1144	1155	1167	697	796	926	885	894	903
07600440	969	1094	1225	1144	1155	1167	817	923	933	885	894	903
07600540	1225	1228	1098	1030	1040	1051	906	908	837	797	805	813
08600630	1850	2172	2540	2672	2699	2726	1345	1585	2292	2229	2251	2274
08600860	2090	2291	2540	2684	2711	2738	1845	2029	2039	2014	2034	2054
09601040A	2213	2548	2933	2882	2974	3248	1798	2083	2483	2502	2721	2994
09601310A	2797	3175	2918	2855	2974	3249	2281	2548	2488	2509	2718	2991
09601040D	1677	2012	2455	2516	2724	3050	1367	1652	2086	2192	2498	2818
09601310D	2095	2482	2443	2494	2724	3052	1714	2001	2090	2198	2496	2815
10601500D	2882	2947	2805	2789	2932	3229	2441	2403	2377	2467	2701	2974
10601780D	3132	3610	3243	3221	3420	3771	2774	3111	3007	2996	3253	3621
11602100D	3893	4048					3495	3468				
11602380D	4186	4048					3495	3468				
11602630D	4230	4091					3495	3468				

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data		Diagnostics	UL Information
--------------------	--------------	---------------------	---------------	----------------------------	----------------------------	--------------------	--------------	------------	----------------	--	-------------	-------------------

Table 10-7 Power losses from the front of the drive when throughpanel mounted

Frame size	Power loss
3	≤ 50 W
4	≤ 75 W
5	≤ 100 W
6	≤ 100 W
7	≤ 204 W
8	≤ 347 W
9	≤ 480 W
10	≤ 480 W
11	≤ 480 W

Table 10-8 Unidrive M Rectifier losses @ 40/50 °C (104/122 °F) ambient

Rectifier Model	Voltage rating (V)	Maximum Losses (W)
10204100	200	535
10404520	400	1019
10502430	575	499
10602480	690	609
11406840	400	1627
11503840	575	935
11604060	690	661
1142X400*	400	1773
1162X380*	690	1679

^{*} Twin rectifier

NOTE

For Regen inductor and switching frequency filter inductor losses refer to section 10.4.2 Regen filter components for high quality/low harmonic power supplies on page 294 onwards.

10.2 Supply requirements

Voltage:

200 V to 240 V \pm 10 % 380 V to 480 V \pm 10 % 500 V to 575 V \pm 10 % 500 V to 690 V \pm 10 %

Number of phases: 3

Maximum supply imbalance: 2 % negative phase sequence (equivalent to 3 % voltage imbalance between phases).

Frequency range: 45 to 66 Hz

NOTE

Drives rated for supply voltages up to 690 V are suitable for use with supply types with neutral or centre grounding i.e. TN-S, TN-C-S, TT

The following supplies are not permitted with Unidrive M Regen:

- 1. Corner grounded supplies (grounded Delta)
- 2. Ungrounded supplies (IT) > 575 V

10.2.1 DC bus voltage set-point

The DC bus voltage set-point is user definable through Pr **03.005**, this must be set to 50 V above Vac* $\sqrt{2}$.

Drive voltage rating (11.033)	Vfs	K		
200 V	415 V	1045		
400 V	830 V	522		
575 V	990 V	438		
690 V	1190 V	364		

10.2.2 Temperature, humidity and cooling method

Ambient temperature operating range:

-20 °C to 55 °C (-4 °F to 131 °F).

Output current derating must be applied at ambient temperatures >40 °C (104 °F).

Cooling method: Forced convection

Maximum humidity: 95 % non-condensing at 40 °C (104 °F)

10.2.3 Storage

-40 °C (-40 °F) to +55 °C (131 °F) for long term storage, or to +70 °C (158 °F) for short term storage.

Storage time is 2 years.

Electrolytic capacitors in any electronic product have a storage period after which they require reforming or replacing.

The DC bus capacitors have a storage period of 10 years.

The low voltage capacitors on the control supplies typically have a storage period of 2 years and are thus the limiting factor.

Low voltage capacitors cannot be reformed due to their location in the circuit and thus may require replacing if the drive is stored for a period of 2 years or greater without power being applied.

It is therefore recommended that drives are powered up for a minimum of 1 hour after every 2 years of storage. This process allows the drive to be stored for a further 2 years.

10.2.4 Altitude

Altitude range: 0 to 3,000 m (9,900 ft), subject to the following conditions: 1,000 m to 3,000 m (3,300 ft to 9,900 ft) above sea level: de-rate the maximum output current from the specified figure by 1 % per 100 m (330 ft) above 1,000 m (3,300 ft)

For example at 3,000 m (9,900 ft) the output current of the drive would have to be de-rated by 20 %.

10.2.5 IP Rating (Ingress Protection)

The drive is rated to IP20 pollution degree 2 (dry, non-conductive contamination only) (NEMA 1). However, it is possible to configure the drive to achieve IP65 rating (NEMA 12) at the rear of the heatsink for through-panel mounting (some current derating is required).

The IP rating of a product is a measure of protection against ingress and contact to foreign bodies and water. It is stated as IP XX, where the two digits (XX) indicate the degree of protection provided as shown in Table 10-9.

Safety	Introduction	Product	System	Mechanical	Electrical	Getting	Optimization	Parameters	Technical	Component	Diagnostics	UL Information
information		Information	design	Installation	Installation	started	- p		data	sizing		Information

Table 10-9 IP Rating degrees of protection

Table 10-9 IP Rating degrees of protection									
	First digit		Second digit						
	otection against contact and gress of foreign bodies	Pro	otection against ingress of water						
0	No protection	0	No protection						
1	Protection against large foreign bodies φ > 50 mm (large area contact with the hand)	1	Protection against vertically falling drops of water						
2	Protection against medium size foreign bodies φ > 12 mm (finger)	2	Protection against spraywater (up to 15° from the vertical)						
3	Protection against small foreign bodies $\phi > 2.5$ mm (tools, wires)	3	Protection against spraywater (up to 60° from the vertical)						
4	Protection against granular foreign bodies $\phi > 1$ mm (tools, wires)	4	Protection against splashwater (from all directions)						
5	Protection against dust deposit, complete protection against accidental contact.	5	Protection against heavy splash water (from all directions, at high pressure)						
6	Protection against dust ingress, complete protection against accidental contact.	6	Protection against deckwater (e.g. in heavy seas)						
7	-	7	Protection against immersion						
8	-	8	Protection against submersion						

Table 10-10 UL enclosure ratings

UL rating	Description
Type 1	Enclosures are intended for indoor use, primarily to provide a degree of protection against limited amounts of falling dirt.
Type 12	Enclosures are intended for indoor use, primarily to provide a degree of protection against dust, falling dirt and dripping non-corrosive liquids.

10.3 Protection

Fuse protection is required in the following Regen systems

- 1. Single Regen, multiple motoring drives
- 2. Multiple Regen, multiple motoring drives
- 3. Unidrive M Regen brake resistor replacement
- Regen systems using a rectifier

Fuse protection required could range from AC supply fusing to DC bus fusing (some systems requiring both AC and DC fusing) for protection of both the Regen and motoring drives along with the Unidrive M rectifier module. For further information on the fusing required for the above systems refer to section 4 *System design* on page 40.

10.3.1 AC Supply fusing

The input current is affected by the supply voltage and impedance.

Typical input current

The values of typical input current are given to aid calculations for power flow and power loss. The values of typical input current are stated for a balanced supply.

Maximum continuous input current

The values of maximum continuous input current are given to aid the selection of cables and fuses. These values are stated for the worst case condition with the unusual combination of stiff supply with bad balance. The value stated for the maximum continuous input current would only be seen in one of the input phases. The current in the other two phases would be significantly lower.

The values of maximum input current are stated for a supply with a 2 % negative phase-sequence imbalance and rated at the supply fault current given in Table 10-11

Table 10-11 Supply fault current used to calculate maximum input currents

Model	Symmetrical fault level (kA)
All	100

Cable sizes are from IEC60364-5-52:2001 table A.52.C with correction factor for 40 °C ambient of 0.87 (from table A52.14) for cable installation method B2 (multicore cable in conduit). Cable size may be reduced if a different installation method is used, or if the ambient temperature is lower. The recommended cable sizes above are only a guide. The mounting and grouping of cables affects their current-carrying capacity, in some cases smaller cables may be acceptable but in other cases a larger cable is required to avoid excessive temperature or voltage drop.

Refer to local wiring regulations for the correct size of cables.

NOTE

The recommended output cable sizes assume that the motor maximum current matches that of the drive. Where a motor of reduced rating is used the cable rating may be chosen to match that of the motor. To ensure that the motor and cable are protected against overload, the drive must be programmed with the correct motor rated current.

NOTE

UL listing is dependent on the use of the correct type of UL-listed fuse.

ruses

The AC supply to the drive must be fitted with suitable protection against overload and short-circuits. Failure to observe this requirement will cause risk of fire.

A fuse or other protection must be included in all live connections to the AC supply.

Fuse types

The fuse voltage rating must be suitable for the drive supply voltage.

Ground connections

The drive must be connected to the system ground of the AC supply. The ground wiring must conform to local regulations and codes of practice.

Table 10-12 Supply fault current used to calculate maximum input currents

Model	Symmetrical fault level (kA)
Unidrive M Rectifier	100

NOTE

Fuse ratings are for a DC supply or paralleled DC bus arrangements.

Safety information	Introduction	Product Information	System	Mechanical Installation	Electrical Installation	Getting	Optimization	Parameters	Technical	Component	Diagnostics	UL Information
information		information	design	installation	installation	started			data	sizing		Information

Table 10-13 Unidrive M size 10 and 11 rectifier current and fuse ratings

	Typical	Maximum	Maximum							
Madal		continuous input current	overload input current		IEC		UL/USA			
				Nominal	Maximum	01	Nominal	Maximum	01	
	Α	Α	Α	Α	Α	Class	Α	Α	Class	
10204100	333	361	494	450	450		450	450		
10404520	370	396	523	450	450	αD	450	450	HSJ	
10502430	202	225	313	250	250	gR	250	250	ПЭЛ	
10602480	202	225	313	250	250		250	250		
11406840	502	539	752	630	630		600	600		
11503840	313	338	473	400	400		400	400	1	
11604060	298	329	465	400	400	gR	400	400	HSJ	
1142X400*	2 x 326	2 x 358	2 x 516	400	400		400	400	1	
1162X380*	2 x 308	2 x 339	2 x 488	400	400		400	400	1	

^{*} Twin rectifier

Table 10-14 Cable ratings for Unidrive size 10 and 11 rectifiers

			Cable s	Cable size (UL)							
			m	AWG or kcmil							
Model		Input			Output		Inj	out	Output		
	Nominal	Maximum	Installation method	Nominal	Maximum	Installation method	Nominal	Maximum	Nominal	Maximum	
10204100	2 x 150	2 x 185	С	2 x 120	2 x 150	С	2 x 300	2 x 500	2 x 400	2 x 500	
10404520	2 x 150	2 x 185	С	2 x 150	2 x 150	С	2 x 350	2 x 500	2 x 500	2 x 500	
10502430	2 x 95	2 x 185	B2	2 x 95	2 x 150	B2	2 x 3/0	2 x 500	2 x 3/0	2 x 500	
10602480	2 x 95	2 x 185	B2	2 x 95	2 x 150	B2	2 x 3/0	2 x 500	2 x 3/0	2 x 500	
11406840	4 x 120	4 x 120	С	4 x 150	4 x 150	С	2 x 250	2 x 250	2 x 300	2 x 300	
11503840	2 x 120	2 x 120	С	2 x 120	2 x 120	С	2 x 250				
11604060	2 x 120	2 x 120	С	2 x 120	2 x 120	С	2 x 300	2 x 300	2 x 400	2 x 400	
1142X400*	2 x 2 x120	2 x 2 x120	С	2 x 2 x 120	2 x 2 x 120	С	2 x 2 x 300				
1162X380*	2 x 2 x120	2 x 2 x120	С	2 x 2 x 120	2 x 2 x 120	С		2 x 2 :	x 300		

^{*} Twin rectifier

10.3.2 Common DC bus fusing

DC bus fusing is required in the following systems for both the Regen and motoring drives, and the rectifier if used as the external soft start circuit.

- 1. Single Regen, multiple motoring drives
- 2. Multiple Regen, multiple motoring drives
- 3. Unidrive M Regen brake resistor replacement
- 4. Regen systems using a rectifier

DC bus fuses as detailed following must be fitted in both the positive and negative branches of DC bus connections to each of the Regen and motoring drives, and the rectifier if used as the external soft start circuit.

NOTE

Ferraz have a range of DC fuses which could be used to provide the required protection, types (00 and 21) may be used.

- 00 Fuse with no trip indicator fitted
- 21 Fuse fitted with trip indicator

NOTE

The DC bus voltage set-point on a Regen system (default) is set to 700 Vdc, this can be up to a maximum 800 Vdc. Therefore ensure the selected DC bus fusing is of the correct voltage rating with regards to the DC bus voltage level (Pr **03.005** DC Bus Voltage Set-point).

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
--------------------	--------------	---------------------	---------------	----------------------------	----------------------------	--------------------	--------------	------------	----------------	------------------	-------------	-------------------

Table 10-15 DC current, fuse and cable ratings (200 V)

	Maximum	Maximum		Maximum fuse	Inverter	Ca	ble size DC	Input
Model	continuous dc input current	overload dc input current	DC fuse IEC class aR	clearing l ² t at operating condition	DC voltage trip	mm²	AWG or Kcmil	IEC Installation
	Arms	Arms	Arms	A ² s	linesiloid			Method
03200066	13.3	20.9	16	190	415	4	12	B2
03200080	18.4	25.3	25	480	415	6	10	B2
03200106	21.2	33.5	25	480	415	8	8	B2
04200137	21.2	30.3	25	480	415	8	8	B2
04200185	29.4	40.9	32	1500	415	10	8	B2
05200250	32.6	52.0	40	1500	415	10	8	B2
06200330	53.1	63.8	63	3080	415	16	4	B2
06200440	61.6	85.0	63	3080	415	35	2	B2
07200610	73.8	109.5	80	6600	415	35	1	B2
07200750	92.4	134.6	100	12500	415	35	1	B2
07200830	115.1	148.9	125	12500	415	70	1/0	B2
08201160	153.4	213.6	160	16700	415	2 x 50	2 x 1	B2
08201320	185.3	243.0	200	22000	415	2 x 70	2 x 1/0	B2
09201760A	220	300	315		415	2 x 70	2 x 2/0	B1
09202190A	287	359	350	330000	415	2 x 95	2 x 4/0	B1
09201760D	220	300	315	330000	415	2 x 70	2 x 2/0	B1
09202190D	287	359	350		415	2 x 95	2 x 4/0	B1
10202830	345	488	450	330000	415	2 x 120	2 x 250	B1
10203000	413	578	500	330000	415	2 x 150	2 x 300	С

Table 10-16 DC current, fuse and cable ratings (400 V)

	Maximum	Maximum		Maximum fuse		Cab	le Size DC lı	nput
Model	continuous dc input current	overload dc input current	DC fuse IEC class aR	clearing l ² t at operating condition	Inverter DC voltage trip threshold	mm²	AWG or Kcmil	IEC Installation Method
	Arms	Arms	Arms	A ² s				Wethou
03400078	14.5	19.7	16	190	830	4	12	B2
03400100	17.2	25.3	20	360	830	6	10	B2
04400150	21.1	30.4	25	480	830	8	8	B2
04400172	27.3	34.8	32	1500	830	10	8	B2
05400270	32.8	52.1	40	1500	830	10	8	B2
05400300	33.9	57.9	40	1500	830	10	8	B2
06400350	40.5	66.7	63	3080	830	10	6	B2
06400420	51.2	80.0	63	3080	830	16	4	B2
06400470	73.8	109.5	80	6600	830	35	1	B2
07400660	92.4	134.6	100	12500	830	35	1	B2
07400770	92.4	134.6	100	12500	830	35	1	B2
07401000	118.4	187.9	125	12500	830	70	1/0	B2
08401340	171.6	267.4	200	22000	830	2 x 70	2 x 1/0	B2
08401570	199.2	302.6	200	22000	830	2 x 70	2 x 2/0	B1
09402000A	261	351	315		830	2 x 70	2 x 3/0	B1
09402240A	303	418	400	330000	830	2 x 95	2 x 4/0	B1
09402000D	261	351	315	330000	830	2 x 70	2 x 3/0	B1
09402240D	303	418	400		830	2 x 95	2 x 4/0	B1
10402700	378	517	450	330000	830	2 x 120	2 x 300	С
10403200	456	614	500	330000	830	2 x 150	2 x 350	С
11403770	525	711	630		830	4 x 95	4 x 250	С
11404170	564	753	700	594000	830	4 x 95	4 x 250	С
11404640	621	925	800	7	830	4 x 120	4 x 300	С

Safaty		Droduct	System	Mechanical	Electrical	Getting			Tochnical	Component		UL
Safety	Introduction	Product Information	System design		Installation	started	Optimization	Parameters	data	Component	Diagnostics	Information
imormation		miomation	ucoigii	motanation	motanation	Startou			aata	Sizirig		imonnation

Table 10-17 DC current, fuse and cable ratings (575 V)

	Maximum	Maximum	DC fuse IEC	Maximum fuse		Cab	le Size DC I	nput
Model	continuous dc input current	overload dc input current	class aR	clearing l ² t at operating condition	Inverter DC voltage trip threshold	mm²	AWG or Kcmil	IEC Installation
	Arms	Arms	Arms	A ² s				Method
06500150	20.5	32.8	25	480	990	6	10	B2
06500190	26.6	41.5	32	1500	990	10	8	B2
06500230	32.2	49.8	40	1500	990	10	8	B2
06500290	40.6	62.7	63	3080	990	10	6	B2
06500350	51.4	75.7	63	3080	990	16	4	B2
07500440	51.1	75.0	63	3080	990	16	4	B2
07500550	73.8	109.5	80	6600	990	35	1	B2
08500630	92.4	134.6	100	12500	990	35	1	B2
08500860	115.3	165.2	125	12500	990	70	2 x 1/0	B2
09501040	181	212	250	137000	990	2 x 70	2 x 1	B2
09501310	181	248	250	137000	990	2 x 70	2 x 1	B2
10501520	220	306	315	137000	990	2 x 70	2 x 2/0	B2
10501900	246	360	315	137000	990	2 x 95	2 x 2/0	B2
11502000	299	402	350		990	2 x 70	2 x 4/0	С
11502540	353	485	450	330000	990	2 x 95	2 x 250	С
11502850	387	583	500		990	2 x 120	2 x 300	С

Table 10-18 DC current, fuse and cable ratings (690 V)

	Maximum	Maximum	DC fuse IEC	Maximum fuse		Cab	le Size DC Ir	nput
Model	continuous dc input current	overload dc input current	class aR	clearing l ² t at operating condition	Inverter DC voltage trip threshold	mm²	AWG or Kcmil	IEC Installation
	Arms	Arms	Arms	A ² s				Method
07600190	22.2	32.4	25	480	1190	10	8	B2
07600240	28.9	40.9	32	1500	1190	10	8	B2
07600290	34.7	49.4	40	1500	1190	10	8	B2
07600380	44.4	64.8	50	3080	1190	16	4	B2
07600440	50.2	75.0	63	3080	1190	16	4	B2
07600540	70.4	92.1	80	6600	1190	35	1	B2
08600630	91.8	121.0	100	12500	1190	35	1	B2
08600860	115.3	165.2	125	12500	1190	70	2 x 1/0	B2
09601040	158	211	200	427000	1190	2 x 50	2 x 1	B2
09601310	183	252	250	137000	1190	2 x 70	2 x 1/0	B2
10601500	223	303	315	427000	1190	2 x 70	2 x 2/0	B2
10601780	252	359	315	137000	1190	2 x 95	2 x 3/0	B2
11602100	282	466	400		1190	2 x 70	2 x 4/0	С
11602380	332	522	450	330000	1190	2 X 95	2 X 250	С
11602630	371	573	500	1	1190	2 X 120	2 X 300	С

Table 10-19 Unidrive M Rectifier DC current, fuse and cable size ratings

	Maximum		Typi	cal cable size	(IEC)	Typical cab	le size (UL)
	continuous DC	DC fuse IEC class aR		mm²		AWG o	r kcmil
Model	output current			DC output		DC o	utput
	Α	Α	Nominal	Maximum	Installation method	Nominal	Maximum
10204100	413	500	2 x 120	2 x 150	С	2 X 400	2 X 500
10404520	455	500	2 X 150	2 X 150	С	2 X 500	2 X 500
10502430	246	315	2 X 95	2 X 150	B2	2 X 3/0	2 X 500
10602480	251	315	2 X 95	2 X 150	B2	2 X 3/0	2 X 500
11406840	689	800	4 X 150	4 X 150	С	2 X 300	2 X 300
11503840	387	500	2 X 120	2 X 120	С	2 X	250
11604060	411	500	2 X 120	2 X 120	С	2 X	400
1142X400*	2 x 400	2 x 450	2 X 2 X 120	2 X 2 X 120	С	2 X2	X 300
1162X380*	2 x 380	2 x 500	2 X 2 X 120	2 X 2 X 120	С	2 X 2	X 300

^{*} Twin rectifier

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
--------------------	--------------	---------------------	---------------	----------------------------	----------------------------	--------------------	--------------	------------	----------------	------------------	-------------	-------------------

10.4 Component data

The following parts may be used:

- Motoring drive
- Regen drive
- Regen inductor
- · Softstart resistor
- Switching frequency filter (optional)
- EMC filter (optional)
- Varistors
- Fusing
- Contactors
- Overloads

In addition to the above the additional items are also required to assemble a Unidrive M Regen Brake Resistor replacement system:

· Isolating transformer

The internal EMC filter must be removed from drive.

10.4.1 Regen filter components for low quality/high harmonic power supplies

Table 10-20 $\,$ 200 V (200 V to 240 V \pm 10 %) Regen filter components to support up to 8 % THD $_{v}$ on the grid

Drive	mode	R	egen in	ductor	;	SFF ind	luctor				SFF capad	citor		
									citor ination		Rated		Max. capacitor	Fuse
Heavy Duty	Normal Duty	mH	Arms	Part number	mH	Arms	Part number	Cap bank A μF	Cap bank B µF	Capacitor connection	voltage Vac	Part number	current per can @ 50 °C (Arms)	rating (A)
03200080	03200066	3.500	9.6	4401-0310	0.880	96	4401-1310							12
03200106	03200080	2.700	11	4401-0311	1.500	11	4401-1311							8
	03200106	2.700	11	4401 0011	1.000	l ''	4401 1011	10		Delta	780	1610-8104	15	8
04200137	04200137*	2.200	15.5	4401-0312	1.100	15.5	4401-1312	10		Delta	700	1010-0104	15	10
04200185*		2.200	15.5	4401-0312	1.100	10.0	4401-1312							10
05200250*	04200185*	1.600	22	4401-0313	0.700	22	4401-1313							8
06200330*		1.100	31	4401-0314	0.500	31	4401-1314	22		Star	550	1610-8224	25	8
	05200250	1.100		4401 0014	0.000	01	4401 1014	10		Delta	780	1610-8104	15	8
	06200330	0.600	56	4401-0316	0.300	56	4401-1316	33		Star	550	1610-8334	30	16
06200440*		0.810	42	4401-0315	0.400	42	4401-1315			O.C.				10
07200610*		0.600	56	4401-0316	0.300	56	4401-1316	15	Not fitted		640	1610-8154	20	12
	06200440*							33	iilleu			1610-8334	30	10
07200750	07200610	0.400	80	4401-0318	0.200	80	4401-1318							20
	07200750	0.320	105	4401-0319	0.160	105	4401-1319	22				1610-8224	25	25
07200830*		0.400	80	4401-0318	0.200	80	4401-1318							20
08201160*	07000000	0.320	105	4401-0319	0.160	105	4401-1319	33				1610-8334	30	25
00004000	07200830*	2 222	450		0.440	450		22				1610-8224	25	25
08201320	08201160	0.220	156	4401-0321	0.110	156	4401-1321	33		Delta	550	1610-8334	30	32
09201760	08201320	0.180	192 192	4401-0322	0.088	192	4404 4222	68 47				1610-8684 1610-8474	40 35	40
09202190*	08201320	0.180	192	4401-0322	0.088	192	4401-1322	47				1010-8474	35	40
09202190*	09201760*	0.180	192 250	4401-0323	0.068	250	4401-1323	68				1610-8684	40	50
10202830	10202830*	0.140	312	4401-0323	0.008	250	4401-1323							63
10202830	10202030	0.110	312	4401-0324	0.055	312	4401-1324	47	47			1610-8474	25	63
10203000	10203000*	0.110	350	4401-0325	0.048	350	4401-1325	47	47	47		1010-84/4	35	80
	10203000"	0.100	აას	4401-0325	0.048	აის	4401-1325							00

^{*} Modify Rated Current (05.007) to match current rating of inductor.

			_									
Safety	Industrial Continue	Product	System	Mechanical	Electrical	Getting	0-4::4:	D	Technical	Component	D:	UL
information	Introduction	Information	design	Installation	Installation	started	Optimization	Parameters	data	eizina	Diagnostics	Information
IIIIOIIIIalioii		IIIIOIIIIatioii	uesign	IIIStaliation	IIIStaliation	Starteu			uata	Siziriy		IIIIOIIIIatioii

Table 10-21 400 V (380 V to 480 V \pm 10 %) Regen filter components to support up to 8 % THD $_{v}$ on the grid

Drive	mode	R	egen in	ductor	;	SFF ind	luctor			(SFF capaci	itor		
									citor nation		Rated	5.	Max. capacitor	Fuse
Heavy Duty	Normal Duty	mH	Arms	Part number	mH	Arms	Part number	Cap bank A μF	Cap bank B µF	Capacitor connection	voltage Vac	Part number	current per can @ 50 °C (Arms)	rating (A)
03400078	03400078*	6.300	9.5	4401-0405	3.160	9.5	4401-0162							20
03400100*		0.300	9.5	4401-0403	3.100	9.5	4401-0102							20
	03400100*	5.000	12	4401-0406	2.500	12	4401-0163							20
04400150	04400150*	3.750	16	4401-0407	1.875	16	4401-0164	10		Delta	780	1610-8104	15	20
04400172*		3.730	10	4401-0407	1.075	10	4401-0104							20
05400270*	04400172	2.400	25	4401-0408	1.200	25	4401-0165							10
05400300	05400270													16
06400350*		1.760	34	4401-0409	0.880	34	4401-0166	15		Star	640	1610-8154	20	10
	05400300							10		Delta	780	1610-8104	15	16
06400420*	06400350	1.500	40	4401-0410	0.750	40	4401-0167	15	NI-4		640	1610-8154	20	10
06400470*	06400420*	1.300	46	4401-0411	0.650	46	4401-0168	fitt	Not fitted	Star	040	1010-0134	20	16
	06400470*	1.000	60	4401-0412	0.500	60	4401-0169	22			550	1610-8224	25	16
07400660	07400660*	0.780	74	4401-0413	0.390	77	4401-0170							20
07400770*		0.760	/4	4401-0413	0.390	''	4401-0170	10		Delta	780	1610-8104	15	25
07401000*	07400770	0.630	96	4401-0414	0.315	96	4401-0171							25
08401340*		0.480	124	4401-0415	0.240	124	4401-0172	47		Star	550	1610-8474	35	32
	07401000	0.400	124	7701-0413	0.240	124	7701-0172	15		Delta	640	1610-8154	20	32
08401570*	08401340	0.380	156	4401-0416	0.190	156	4401-0173	68		Star		1610-8684	40	40
	08401570*	0.330	180	4401-0417	0.165	180	4401-0174	00		Stai		1010-0004	40	50
09402000*	09402000*	0.300	210	4401-0418	0.135	220	4401-0175	33				1610-8334	30	50
09402240*		0.000	210	1401 0410	0.100	220	4401 0170	00						50
10402700								22	22			1610-8224	25	63
	09402240	0.200	300	4401-0419	0.100	300	4401-0176	47	Not fitted			1610-8474	35	63
10403200*	10402700*							22	22	1	550	1610-8224	25	63
	10403200*	0.168	350	4401-0420	0.080	350	4401-1205	33	33	Delta		1610-8334	30	80
11403770	11403770									1				100
11404170		0.135	437	4401-0292	0.067	437	4401-0301							125
11404640		Ī						47	47		1610-8474	1610-8474	35	125
	11404170	0.121	487	4401-0293	0.060	487	4401-0302	1						125
	11404640	0.121	407	4401-0293	0.000	407	4401-0302							125

^{*} Modify Rated Current (05.007) to match current rating of inductor.

0-4-4		Decelorat	0	Maskaniasi	Clastical	0-46			Technical	0		1.11
Safety	Introduction	Product	System	Mechanical	Electrical	Getting	Optimization	Parameters	Technical	Component	Diagnostics	UL
information		Information	design	Installation	Installation	started	- p		data	sizing	g	Information

Table 10-22 $\,$ 575 V (500 V to 575 V ±10 %) Regen filter components to support up to 8 % THD $_{v}$ on the grid

Drive	mode	R	egen in	ductor	,	SFF ind	uctor			(SFF capaci	tor		
Heavy	Normal			Part			Part	Capa combi	citor nation	Capacitor	Rated	Part	Max. capacitor	Fuse
Duty	Duty	mH	Arms	number	mH	Arms	number	Cap bank A µF	Cap bank B µF	connection	voltage Vac	number	current per can @ 50 °C (Arms)	rating (A)
06500150	06500150	5.300	19	4401-0210										6
06500190		5.500	13	4401-0210	1.400	22	4401-1211							6
06500230*	06500190	4.600	22	4401-0211	1.400									6
06500290*	06500230	3.800	27	4401-0212		36	4401-1213	10			780	1610-8104	15	6
06500350	06500290	2.800	36	4401-0213	1.200	43	4401-1214		Not					8
07500440*	06500350	2.400	43	4401-0214	1.000	52	4401-1215		fitted					8
07500550*	07500440*	1.900	52	4401-0215	0.800	63	4401-1216							10
08500630	07500550*	1.600	63	4401-0216	0.600	85	4401-1217	15			640	1610-8154	20	12
08500860*	08500630*	1.200	85	4401-0217	0.510	100	4401-1218	22				1610-8224	25	16
09501040*	08500860*	1.000	100	4401-0218	0.400	125	4401-1219	33				1610-8334	30	20
09501310*	09501040	0.810	125	4401-0219	0.350	144	4401-1220	47		Star			35	25
10501520*								22	22	O.G.		1610-8224	25	25
	09501310*	0.700	144	4401-0220	0.300	168	4401-1221	47	Not fitted			1610-8474	35	25
10501900	10501520*	0.530	192	4401-0421	0.210	192	4401-1223	33	33			1610-8334	30	32
	10501900*	0.550	192	4401-0421	0.210	192	4401-1223	33	33		550	1010-0334	30	32
11502000		0.441	230	4401-0297	0.221	230	4401-0306							40
	11502000	0.361	281	4401-0298	0.181	281	4401-0307							63
11502540		0.441	230	4401-0297	0.221	230	4401-0306	47	47			4040 0474	25	40
	11502540	0.361	281	4401-0298	0.181	281	4401-0307	47	4/			1610-8474	35	63
11502850		0.441	230	4401-0297	0.221	230	4401-0306							40
	11502850	0.361	281	4401-0298	0.181	281	4401-0307							63

^{*} Modify Rated Current (05.007) to match current rating of inductor.

Table 10-23 690 V (500 V to 690 V ±10 %) Regen filter components to support up to 8 % THD_v on the grid

Drive	mode	R	egen in	ductor	,	SFF ind	uctor			5	SFF capaci	itor		
				_ ,			_ ,		acitor ination		Rated		Max. capacitor	Fuse
Heavy Duty	Normal Duty	mH	Arms	Part number	mH	Arms	Part number	Cap bank A µF	Cap bank B µF	Capacitor connection	voltage Vac	Part number	current per can @ 50 °C (Arms)	rating (A)
07600190		5.300	19	4401-0210		22	4401-1211							6
07600240*	07600190*	4.600	22	4401-0211	1.400	22	4401-1211							6
07600290*	07600240*	3.800	27	4401-0212	1.400	36	4401-1213	10			780	1610-8104	15	8
07600380*	07600290*	2.800	36	4401-0213		30	4401-1213	10			700	1010-0104	15	8
07600440*	07600380*	2.400	43	4401-0214	1.200	43	4401-1214	1						10
07600540*	07600440	1.900	52	4401-0215	1.000	52	4401-1215							12
08600630		1.600	63	4401-0216	0 800	63	4401-1216	15	Not fitted		640	1610-8154	20	16
	07600540*	1.000	03	4401-0210	0.000	03	4401-1210	10	intou		780	1610-8104	15	20
08600860*	08600630*	1.200	85	4401-0217	0.600	85	4401-1217	22				1610-8224	25	20
09601040*		1.000	100	4401-0218	0.510	100	4401-1218	33				1610-8334	30	20
	08600860*	1.000	100	7701-0210	0.510	100	4401-1210	22				1610-8224	25	25
09601310*		0.810	125	4401-0219	0.400	125	4401-1219	47		Star		1610-8474	35	32
	09601040													32
10601500*		0.700	444	4404 0000	0.050	444	4404 4000	22	22			1610-8224	25	32
	09601310*	0.700	144	4401-0220	0.350	144	4401-1220	47	Not fitted		550	1610-8474	35	32
10601780*	10601500*	0.600	168	4401-0221	0.300	168	4401-1221	22	33			1610-8224	25	32
	10601780*	0.530	192	4401-0421	0.260	192	4401-1222	22	33			1610-8334	20	40
11602100	11602100	0.441	230	4401-0297	0.221	230	4401-0306			1				50
11602380		0.441	230	4401-0297	0.221	230	4401-0300							50
	11602380	0.361	281	4401-0298	0.181	281	4401-0307	47	47			1610-8474	35	63
11602630		0.441	230	4401-0297	0.221	230	4401-0306	06						50
	11602630	0.361	281	4401-0298		1						63		

^{*} Modify Rated Current (05.007) to match current rating of inductor.

Safety information	Introduction	Product Information	System	Mechanical Installation	Electrical Installation	Getting	Optimization	Parameters	Technical	Component	Diagnostics	UL Information
information		information	design	installation	installation	started			data	sizing		Information

10.4.2 Regen filter components for high quality/low harmonic power supplies

Table 10-24 $\,$ 200 V (200 V to 240 V \pm 10 %) Regen filter components to support up to 2 % THD $_{\rm V}$ on grid

Drive	mode		Regen in	ductor		SFF indu	ctor			SFF capacito	or	
Heavy Duty	Normal Duty	mH	Arms	Part number	mH	Arms	Part number	Capacitor value	Rated voltage	Part number	Capacitor current per can	Fuse rating (A)
								μF	Vac		Arms	(-7
03200080	03200066	3.500	9.6	4401-0310	0.880	9.6	4401-1310	7	400	1664-1074	1.6	2
03200106	03200080	2.700	11	4401-0311	1.500	11	4401-1311	7	400	1664-1074	1.8	4
	03200106	2.700	11	4401-0311	1.500		4401-1311	,	400	1004-1074	1.0	4
04200137	04200137*	2.200	15.5	4401-0312	1.100	15.5	4401-1312	7	400	1664-1074	2	4
04200185*		2.200	15.5	4401-0312	1.100	10.0	4401-1312	,	400	1004-1074	_	4
05200250*	04200185*	1.600	22	4401-0313	0.700	22	4401-1313	17	400	1664-2174	3.8	6
06200330*	05200250	1.100	31	4401-0314	0.500	31	4401-1314	17	400	1664-2174	4.4	8
	06200330	0.600	56	4401-0316	0.300	56	4401-1316	32	525	1665-8324	8.1	16
06200440*		0.810	42	4401-0315	0.400	42	4401-1315	17	400	1664-2174	5.2	8
07200610*	06200440*	0.600	56	4401-0316	0.300	56	4401-1316	32	525	1665-8324	8.1	16
07200750	07200610	0.400	80	4401-0318	0.200	80	4401-1318	32	525	1665-8324	9.9	16
	07200750	0.320	105	4401-0319	0.160	105	4401-1319	64	400	1664-2644	15.8	25
07200830*		0.400	80	4401-0318	0.200	80	4401-1318	32	525	1665-8324	9.9	16
08201160*	07200830*	0.320	105	4401-0319	0.160	105	4401-1319	64	400	1664-2644	15.8	25
08201320	08201160	0.220	156	4401-0321	0.110	156	4401-1321	64	400	1664-2644	19.2	32
09201760	08201320	0.180	192	4401-0322	0.088	192	4401-1322	2 x 64	400	2 x	15.2	25
09202190*	09201760*	0.180	192	4401 0022	0.000	102	4401 1022	2 X 04	7	1664-2644	10.2	25
	09202190*	0.140	250	4401-0323	0.068	250	4401-1323	2 x 64	400	2 x 1664-2644	16.8	32
10202830	10202830*	0.110	312	4401-0324	0.055	312	4401-1324	2 x 64	400	2 x	19.2	32
10203000		0.110	312	7401-0324	0.000	312	7701-1024	2 A U4	400	1664-2644	13.2	32
	10203000*	0.100	350	4401-0325	0.048	350	4401-1325	2 x 64	400	2 x 1664-2644	20.5	32

^{*} Modify Rated Current (05.007) to match current rating of inductor.

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information

Table 10-25 $\,$ 400 V (380 V to 480 V ±10 %) Regen filter components to support up to 2 % THD $_{\rm V}$ on grid

Drive	mode		Regen in	ductor		SFF ind	uctor			FF capacitor		
Heavy Duty	Normal Duty	mH	Arms	Part number	mH	Arms	Part number	Capacitor value	Rated voltage	Part number	Capacitor current per can	Fuse rating (A)
								μF	Vac		Arms	(~)
03400078	03400078*	6.300	9.5	4401-0405	3.160	9.5	4401-0162					6
03400100*		0.300	9.5	4401-0403	3.100	9.5	4401-0102				3.3	6
	03400100*	5.000	12	4401-0406	2.500	12	4401-0163	8		1610-7804		6
04400150	04400150*	3.750	16	4401-0407	1.875	16	4401-0164	0		1010-7004	3.5	6
04400172*		3.750	16	4401-0407	1.875	10	4401-0164				3.5	6
05400270*	04400172	2.400	25	4401-0408	1.200	25	4401-0165				4.1	6
05400300	05400270	1.760	34	4401-0409	0.880	34	4404 0466				10	20
06400350*	05400300	1.760	34	4401-0409	0.880	34	4401-0166				13	20
06400420*	06400350	1.500	40	4401-0410	0.750	40	4401-0167				13.1	20
06400470*	06400420*	1.300	46	4401-0411	0.650	46	4401-0168	32		1665-8324	13.3	25
	06400470*	1.000	60	4401-0412	0.500	60	4401-0169				13.9	25
07400660	07400660*	0.780	7.4	4404 0440	0.000	77	4404 0470				44.0	25
07400770*		0.780	74	4401-0413	0.390	77	4401-0170				14.8	25
07401000*	07400770	0.630	96	4401-0414	0.315	96	4401-0171		525		18.1	32
08401340*	07401000	0.480	124	4401-0415	0.240	124	4401-0172	20		4005 0004	20.1	32
08401570*	08401340	0.380	156	4401-0416	0.190	156	4401-0173	39		1665-8394	22.7	40
	08401570*	0.330	180	4401-0417	0.165	180	4401-0174				24.8	40
09402000*	09402000*	0.000	000	4404 0440	0.405	000	4404 0475				40.4	32
09402240*		0.300	202	4401-0418	0.135	200	4401-0175				18.4	32
10402700	09402240	0.000	200	4404 0440	0.400	200	4404 0470	2 x 39		2 x 1665-8394	00.4	32
10403200*	10402700*	0.200	300	4401-0419	0.100	300	4401-0176			1005-6594	20.1	32
	10403200*	0.168	350	4401-0420	0.080	350	4401-1205				25.4	40
11403770	11403770											50
11404170		0.135	437	4401-0292	0.067	437	4401-0301			_		50
11404640								3x 64		3 x 1665-8644	33.5	50
	11404170	0.404	487	4404 0000	0.060	407	4404 0202			1000-0044		50
	11404640	0.121	487	4401-0293	0.060	487	4401-0302					50

^{*} Modify Rated Current (05.007) to match current rating of inductor.

Safety	Introduction	Product	-,	Mechanical	Electrical	Getting	Optimization	Parameters	Technical	Component	Diagnostics	UL Information
information		Information	design	Installation	Installation	started			data	sizing	g	Information

Table 10-26 575 V (500 V to 575 V \pm 10 %) Regen filter components to support up to 2 % THD $_{\rm V}$ on grid

Drive	mode		Regen i	nductor		SFF ind	luctor			SFF capacite	or	
Heavy Duty	Normal Duty	mH	Arms	Part number	mH	Arms	Part number	Capacitor value µF	Rated voltage Vac	Part number	Capacitor current per can Arms	Fuse rating (A)
06500150	06500150							μι	Vac		Aillis	8
06500190	00000100	5.300	19	4401-0210		22	4401-1211				5.2	8
06500230*	06500190	4.600	22	4401-0211	1.400						0.2	8
06500290*	06500230	3.800	27	4401-0212		36	4401-1213				5.3	8
06500350	06500290	2.800	36	4401-0213	1.200	43	4401-1214	11.2		1666-8113	5.6	10
07500440*	06500350	2.400	43	4401-0214	1.000	52	4401-1215				5.9	10
07500550*	07500440*	1.900	52	4401-0215	0.800	63	4401-1216				6.4	10
08500630	07500550*	1.600	63	4401-0216	0.600	85	4401-1217		690		6.9	12
08500860*	08500630*	1.200	85	4401-0217	0.510	100	4401-1218				8.2	16
09501040*	08500860*	1.000	100	4401-0218	0.400	125	4401-1219		1666		12.5	20
09501310*	09501040	0.810	125	4401-0219	0.350	144	4401-1220	22.5		1666-8223	13.8	25
10501520*	09501310*	0.700	144	4401-0220	0.300	168	4401-1221				14.9	25
10501900	10501520*	0.530	192	4401-0421	0.210	192	4401-1223	2 x 22.5		2 x	12.2	20
	10501900*	0.550	192	4401-0421	0.210	192	4401-1223	2 X 22.5		1666-8223	12.2	20
11502000		0.441	230	4401-0297	0.221	230	4401-0306	2 x 46.2		2 x 1668-8464		40
	11502000	0.361	281	4401-0298	0.181	281	4401-0307	3 x 46.2		3 x 1668-8464		40
11502540		0.441	230	4401-0297	0.221	230	4401-0306	2 x 46.2	800	2 x 1668-8464	24	40
	11502540	0.361	281	4401-0298	0.181	281	4401-0307	3 x 46.2	800	3 x 1668-8464	24	40
11502850		0.441	230	4401-0297	0.221	230	4401-0306	2 x 46.2		2 x 1668-8464		40
	11502850	0.361	281	4401-0298	0.181	281	4401-0307	3 x 46.2		3 x 1668-8464		40

^{*} Modify Rated Current (05.007) to match current rating of inductor.

Table 10-27 $\,$ 690 V (500 V to 690 V \pm 10 %) Regen filter components to support up to 2 % THD $_{\rm V}$ on grid

Drive	mode	I	Regen i	nductor		SFF in	ductor			SFF capacitor		
Heavy Duty	Normal Duty	mH	Arms	Part number	mH	Arms	Part number	Capacitor value	Rated voltage	Part number	Capacitor current per	Fuse rating
Duty	Duty						namber	μF	Vac		can Arms	(A)
07600190		5.300	19	4401-0210		22	4401-1211				4.7	8
07600240*	07600190*	4.600	22	4401-0211	1.400	22	4401-1211				4.8	8
07600290*	07600240*	3.800	27	4401-0212	1.400	36	4401-1213				5	8
07600380*	07600290*	2.800	36	4401-0213		30	4401-1213	8.3		1668-7833	5.5	8
07600440*	07600380*	2.400	43	4401-0214	1.200	43	4401-1214				5.8	10
07600540*	07600440	1.900	52	4401-0215	1.000	52	4401-1215				6.6	10
08600630	07600540*	1.600	63	4401-0216	0.800	63	4401-1216				7.3	12
08600860*	08600630*	1.200	85	4401-0217	0.600	85	4401-1217				11.6	20
09601040*	08600860*	1.000	100	4401-0218	0.510	100	4401-1218	16.6		1668-8163	12.8	20
09601310*	09601040	0.810	125	4401-0219	0.400	125	4401-1219				14.5	25
10601500*	09601310*	0.700	144	4401-0220	0.350	144	4401-1220		800	2 x	10.9	20
10601780*	10601500*	0.600	168	4401-0221	0.300	168	4401-1221	2 x 16.6		1668-8163	11.6	20
	10601780*	0.530	192	4401-0421	0.260	192	4401-1222			1000 0100	12.4	20
11602100	11602100	0.441	230	4401-0297	0.221	230	4401-0306	2 x 46.2		2 x		40
11602380		0.441	230	4401-0297	0.221	200	4401 0000	2 X 40.2		1668-8464		40
	11602380	0.361	281	4401-0298	0.181	281	4401-0307	3 x 46.2		3 x 1668-8464	28	40
11602630		0.441	230	4401-0297	0.221	230	4401-0306	2 x 46.2	2 x 1668-8464			40
	11602630	0.361	281	4401-0298	0.181	281	4401-0307	3 x 46.2		-		40

^{*} Modify Rated Current (05.007) to match current rating of inductor.

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
--------------------	--------------	---------------------	---------------	----------------------------	----------------------------	--------------------	--------------	------------	----------------	------------------	-------------	-------------------

10.4.3 Regen inductors

NOTE

The Regen inductor core losses are directly dependent on the switching frequency and specific core material and therefore selection is critical. As a result only Regen inductors specified in this guide should be used.

The Regen inductor supports the difference between the PWM voltage from the Regen drive and the sinusoidal voltage from the supply. One three-phase Regen inductor is required per Regen drive.

Each Regen inductor is fitted with a thermistor mounted in the centre coil. Thermistor characteristics are set in accordance with DIN 44082 (triplet).

The Regen inductors have a normal operating temperature in excess of 100 °C depending upon the ambient and the motor cable lengths. Care must be taken so that this does not create a fire risk. The Regen inductor thermistor must be configured to disable the drive in the event of thermal overload.

NOTE

If the permissible cable lengths are exceeded additional cooling may be required for the Regen inductors, refer to section 4.6 *Exceeding maximum cable length* on page 70 for more information.

Table 10-28 200 V Regen inductor specifications

Inductor part	Amps	mH	Losses	L	D	Н	Weight	Fixing centres (x * y)	Fixing	Eiving type
number	Allips	ШП	W	mm	mm	mm	kg	mm	mm	Fixing type
4401-0310	9.6	3.500	71	200	180	215	10	120 x 140	9	
4401-0311	11.0	2.700	72	200	180	215	11	120 x 140	9	1
4401-0312	15.5	2.200	116	200	180	215	12	120 x 140	9	
4401-0313	22	1.600	157	200	180	215	15	120 x 140	9	
4401-0314	31	1.100	193	240	180	270	17	160 x 140	9	1
4401-0315	42	0.810	200	240	200	270	24	160 x 160	9	1
4401-0316	56	0.600	264	320	220	325	32	200 x 180	11	A
4401-0318	80	0.400	298	320	220	325	39	200 x 180	11	7 ^
4401-0319	105	0.320	338	360	260	370	55	240 x 220	11	1
4401-0321	156	0.220	475	360	280	395	77	240 x 240	11	1
4401-0322	192	0.180	526	360	280	395	97	240 x 240	11	
4401-0323	250	0.140	610	410	300	430	110	280 x 260	11	
4401-0324	312	0.110	776	410	300	430	120	280 x 260	11	
4401-0325	350	0.100	863	480	320	490	130	320 x 260	11	

Table 10-29 400 V Regen inductor specifications

Inductor part	Amps	mH	Losses	L	D	Н	Weight	Fixing centres (x *y)	Fixing	Fixing
number	Allips	11111	W	mm	mm	mm	kg	mm	mm	type
4401-0405	9.5	6.300	105	190	82	161	6	170 x 58	7	
4401-0406	12	5.000	115	190	91	161	7.5	170 x 168	8	
4401-0407	16	3.750	155	230	124	229	11	180 x 98	8	
4401-0408	25	2.400	205	230	130	230	15	180 x 98	8	
4401-0409	34	1.760	215	230	154	242	18	180 x 122	8	
4401-0410	40	1.500	215	240	156	245	23	190 x 125	11	
4401-0411	46	1.300	325	265	160	263	28	215 x 126	11	
4401-0412	60	1.000	245	300	176	276	30	240 x 120	11	
4401-0413	74	0.780	400	300	200	275	30	240 x 135	11	
4401-0414	96	0.630	540	360	230	352	62	310 x 140	11	Α
4401-0415	124	0.480	580	360	217	322	62	310 x 140	11	
4401-0416	156	0.380	565	360	237	318	80	310 x 155	11	
4401-0417	180	0.330	685	420	230	370	85	370 x 151	11	
4401-0418	210	0.300	805	420	257	372	90	370 x 166	11	
4401-0419	300	0.200	950	480	260	429	160	430 x 210	11	
4401-0420	350	0.168	1500	480	250	447	165	430 x 210	13	
4401-0262	585	0.101	1500	480	280	435	185	430 x 240	13	
4401-0292	437	0.135	1500	480	280	435	185	430 x 240	13	
4401-0293	487	0.121	1500	480	280	435	185	430 x 240	13	

Safety	Introduction	Product	-,	Mechanical	Electrical	Getting	Optimization	Parameters	Technical	Component	Diagnostics	UL Information
information		Information	design	Installation	Installation	started			data	sizing	g	Information

Table 10-30 575 V / 690 V Regen inductor specifications

Inductor part	Amps	mH	Losses	L	D	Н	Weight	Fixing centres (x * y)	Fixing	Fixing
number	Allips	"""	W	mm	mm	mm	kg	mm	mm	type
4401-0210	19	5.300	268	325	220	320	32	200 x 180	11	
4401-0211	22	4.600	288	325	220	320	33	200 x 180	11	
4401-0212	27	3.800	322	325	220	320	39	200 x 180	11	
4401-0213	36	2.800	348	370	260	360	55	240 x 220	11	
4401-0214	43	2.400	398	375	280	360	65	240 x 240	11	
4401-0215	52	1.900	456	395	280	360	77	240 x 240	11	۸
4401-0216	63	1.600	503	395	280	360	97	240 x 240	11	Α
4401-0217	85	1.200	605	430	300	410	110	280 x 260	11	
4401-0218	100	1.000	950	500	350	480	170	320 x 260	11	
4401-0219	125	0.810	880	490	320	480	130	320 x 260	11	
4401-0220	144	0.700	1022	500	320	480	140	320 x 260	11	
4401-0221	168	0.600	1656	555	300	480	165	320 x 240	11	
4401-0421	192	0.530	1350	600	223	480	180	430 x 183	13	С
4401-0297	230	0.441	1500	480	280	435	130	430 x 240	13	Α
4401-0298	281	0.361	1500	480	280	435	130	430 x 240	13	А

10.4.4 Switching frequency filter inductors

Table 10-31 200 V SFF inductor specifications

Inductor part	Amno	mH	Losses	L	D	Н	Weight	Fixing centres (x * y)	Fixing	Eiving type
number	Amps	ШП	W	mm	mm	mm	kg	mm	mm	Fixing type
4401-1310	9.6	0.880	10	150	90	150	4	120 x 47	8 x 18	
4401-1311	11.0	1.500	18	150	90	150	4	120 x 47	8 x 18	
4401-1312	15.5	1.100	26	150	90	150	4	120 x 47	8 x 18	1
4401-1313	22	0.700	33	150	90	150	4	120 x 47	8 x 18	
4401-1314	31	0.500	37	190	100	180	6	130 x 54	8 x 20	
4401-1315	42	0.400	38	190	120	180	10	130 x 74	8 x 20	
4401-1316	56	0.300	48	190	160	180	12	130 x 184	8 x 20	В
4401-1318	80	0.200	60	190	160	180	13	130 x 184	8 x 20	
4401-1319	105	0.160	78	255	160	240	16	200 x 180	10 x 20	
4401-1321	156	0.110	92	255	180	240	22	200 x 100	10 x 20	
4401-1322	192	0.088	97	255	190	240	25	200 x 100	10 x 20	
4401-1323	250	0.068	119	300	180	300	37	204 x 113	10 x 20	7
4401-1324	312	0.055	170	300	180	300	37	204 x 113	10 x 20	7
4401-1325	350	0.048	162	300	190	300	49	204 x 123	10 x 20	

0-4-4		Decelorat	0	Maskaniasi	Clastical	0-46			Technical	0		1.11
Safety	Introduction	Product	System	Mechanical	Electrical	Getting	Optimization	Parameters	Technical	Component	Diagnostics	UL
information		Information	design	Installation	Installation	started	- p		data	sizing	g	Information

Table 10-32 400 V SFF inductor specifications

Inductor part	Amno	mH	Losses	L	D	Н	Weight	Fixing centres (x * y)	Fixing	Eiving type
number	Amps	"""	W	mm	mm	mm	kg	mm	mm	Fixing type
4401-0162	9.5	3.160	27	150	75	135	3.1	120 x 47	8 x 12	С
4401-0163	12	2.500	33	150	75	135	3.3	120 x 47	8 x 12	С
4401-0164	16	1.875	48	180	82	158	5.3	130 x 58	8 x 12	С
4401-0165	25	1.200								
4401-0166	34	0.880								
4401-0167	40	0.750								
4401-0168	46	0.650	69	180	116	179	9.8	130 x 84	8 x 12	С
4401-0169	60	0.500	98	240	110	247	20	200 x 80	11 x 20	С
4401-0170	77	0.390								
4401-0171	96	0.315	147	240	180	258	18	200 x 100	11 x 20	С
4401-0172	124	0.240	178	240	185	260	20	200 x 100	11 x 20	С
4401-0173	156	0.190	224	300	177	300	24	204 x 113	11 x 20	В
4401-0174	180	0.165	251	300	177	300	25	204 x 113	11 x 20	В
4401-0175	220	0.135	229	300	177	300	25	204 x 113	11 x 20	В
4401-0176	300	0.100	273	300	195	300	40	204 x 130	11 x 20	В
4401-1205	350	0.080								
4401-0301	437	0.067								
4401-0302	487	0.060	357	357	175	322	58	328 x 267	9 x 14	Α

Table 10-33 575 V / 690 V SFF inductor specifications

Inductor part	Amps	mH	Losses	L	D	Н	Weight	Fixing centres (x * y)	Fixing	Fixing type
number	Allips	"""	W	mm	mm	mm	kg	mm	mm	I ixiiig type
4401-1211	22	1.400	36	190	120	180	10	130 x 74	8 x 20	
4401-1213	36	1.400	81	255	160	240	16	200 x 80	10 x 20	
4401-1214	43	1.200	86	255	170	240	20	200 x 90	10 x 20	
4401-1215	52	1.000	93	255	180	240	22	200 x 100	10 x 20	
4401-1216	63	0.800	95	255	190	240	25	200 x 100	10 x 20	
4401-1217	85	0.600	122	300	180	300	37	204 x 113	10 x 20	В
4401-1218	100	0.510	190	300	180	300	37	204 x 120	4 x 10	1 P
4401-1219	125	0.400	172	300	190	300	49	204 x 123	10 x 20	
4401-1220	144	0.350	177	300	200	300	50	204 x 130	10 x 20	
4401-1221	168	0.300	207	300	200	300	50	204 x 130	10 x 20	
4401-1222	192	0.260	220	325	220	325	55	204 x 160	4 x 10	
4401-1223	192	0.210	189	300	200	300	50	204 x 130	10 x 20	
4401-0306	230	0.221	357	360	176	322	58	328 x 263	11 x 17	Α
4401-0307	281	0.181	375	360	176	322	66	328 x 263	11 x 17	Α

10.4.5 Switching frequency filter capacitors

The capacitors specified below are suitable for operation at any switching frequency. These being sized for operation at 3 kHz, however, operation above 3 kHz is possible with the capacitors being more effective.

Table 10-34 $\,$ 200 V / 400 V / 575 V / 690 V Switching frequency filter capacitor to support up to 8 $\,\%$ THD $_{\rm V}$

Capacitor part no.	Capacitance	Max current at 50 °C	Max Ø	Max L	Weight	Fixing stud
	μF	ARMS	mm	mm	kg	mm
1610-8104	10	15	65	117	0.4	
1610-8154	15	20	65	117	0.4	
1610-8224	22	25	65	117	0.4	M12 @
1610-8334	33	30	75	117	0.5	12 N m (106.3 lb in)
1610-8474	47	35	65	197	0.8	
1610-8684	68	40	65	247	1	

NOTE

SFF capacitors designed to support supplies of up to 8 % THD_v do not require discharge resistors to be installed if the regen drive main contactor is at the supply side of the capacitor. (See Figure 4-5 and Figure 4-7). Refer to the table below for further details.

Safetv		Product	System	Mechanical	Electrical	Getting			Technical	Component	l	UL
Culoty	Introduction	1 100000	Cycloni	Miconamical	Licotilicai	County	Optimization	Parameters	roommoar	Component	Diagnostics	
information	IIIIIOddciioii	Information	desian	Installation	Installation	started	Optimization	i arameters	data	sizina	Diagnostics	Information
miomiation		milomiation	accigii	motanation	motanation	otartoa			aata	oizii ig		miomiation

Table 10-35 Discharge resistor details for SFF capacitors to support 8 % THD_v

Drive voltage	Resistance	Power rating
V	MΩ	W
200	2	0.25
400	2	0.25
575	2	0.5
690	2	1

Table 10-36 200 V Switching frequency filter capacitor to support up to 2 % THD_v

Capacitor part no.	Capacitance	I _{rated}	Max Ø	Max L	Weight	Fixing stud	Discharge resistor
Capacitor part no.	uF	Α	mm	mm	kg	mm	Ω
1664-1074	7	1.7	53	114	0.3	M 12 @ 15 N m (132.9 lb in)	
1664-2174	17	4.3	116.2	204	0.4	M 40 @	390 k
1665-8324	32	11	116.2	204	1.3	M 12 @ 10 N m (88.6 lb in)	
1664-2644	64	16.6	116.2	204	1.2	10 14 111 (00.0 10 111)	

Table 10-37 400 V Switching frequency filter capacitor to support up to 2 % THD_v

Capacitor part no.	Capacitance	I _{rated}	Max Ø	Max L	Weight	Fixing stud	Discharge resistor
Capacitor part no.	uF	Α	mm	mm	kg	mm	Ω
1610-7804	8	2.64	82	204	0.5	M 12 @ 15 N m (132.9 lb in)	390 k
1665-8324	32	11.0	121	204	1.1		390 k
1665-8484	48	14.0	121	204	1.3	M 40 @	390 k
1665-8774	77	24.0	121	204	1.5	M 12 @ 10 N m (88.6 lb in)	390 k
1665-8394	39	20	121	204	1.5	10 14 111 (00:0 15 111)	390 k
1665-8644	64.3	22	116	200	2.2		3 x 390 k*

^{*} Connected in delta.

Table 10-38 575 V / 690 V Switching frequency filter capacitor to support up to 2 % THD_v

Capacitor part no.	Capacitance	I _{rated}	Max Ø	Max L	Weight	Fixing stud	Discharge resistor
Capacitor part no.	uF	Α	mm	mm	kg	mm	Ω
1666-8113	11	5	116.2	204	1.3		390 k
1666-8223	23	10	116.2	204	1.4	M 40 @	390 k
1668-7833	8.3	7.3	116.2	204	1.2	M 12 @ 10 N m (88.6 lb in)	390 k
1668-8163	16.6	12.4	116.2	204	1.2	10 14 111 (00:0 15 111)	390 k
1668-8464	46.4	24.2	136	200	3.2		3 x 150 k**

^{**} Connected in star.

NOTE

The discharge resistors listed in Table 10-36 to Table 10-38 are supplied pre-installed to the SFF capacitor. These resistors are a requirement and should remain installed.

The 3-phase switching frequency filter (SFF) capacitors are situated on the input of the Regen system. If the harmonic distortion of the supply is high for extended periods then this can cause a reduction of the service life of the capacitors. The effect of this is to reduce the capacitance value. If high levels of harmonic distortion are expected then it is recommended that the capacitance values be checked periodically, and capacitors which have fallen outside of their tolerance range be replaced.

10.4.6 Softstart resistor

The start-up circuit limits the amount of current flowing into the DC bus of the Regen drive and motoring drive(s) when the supply is first switched on. For correct sizing of the softstart resistor, refer to section 11.2.1 *Procedure* on page 309.

Only pulse withstanding resistors should be used for charging the inverter system.

A range of suitable pulse withstanding resistors are available from Metallux (PWR-R).

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
)							•		

10.4.7 Softstart resistor MCB

Protection for the softstart circuit is provided using a thermal overload to protect against a high impedance short circuit, and a separate magnetic overload to protect against a direct short circuit.

Table 10-39 200 V SFF inductor specifications

Inductor part	Amps	mH	Losses	L	D	Н	Weight	Fixing centres (x * y)	Fixing	Fixing type
number	Allips		W	mm	mm	mm	kg	mm	mm	- I ixilig type
4401-1310	9.6	0.880	10	150	90	150	4	120 x 47	8 x 18	
4401-1311	11.0	1.500	18	150	90	150	4	120 x 47	8 x 18	
4401-1312	15.5	1.100	26	150	90	150	4	120 x 47	8 x 18	1
4401-1313	22	0.700	33	150	90	150	4	120 x 47	8 x 18	
4401-1314	31	0.500	37	190	100	180	6	130 x 54	8 x 20	1
4401-1315	42	0.400	38	190	120	180	10	130 x 74	8 x 20	1
4401-1316	56	0.300	48	190	160	180	12	130 x 184	8 x 20	В
4401-1318	80	0.200	60	190	160	180	13	130 x 184	8 x 20	
4401-1319	105	0.160	78	255	160	240	16	200 x 180	10 x 20	1
4401-1321	156	0.110	92	255	180	240	22	200 x 100	10 x 20	1
4401-1322	192	0.088	97	255	190	240	25	200 x 100	10 x 20	1
4401-1323	250	0.068	119	300	180	300	37	204 x 113	10 x 20	1
4401-1324	312	0.055	170	300	180	300	37	204 x 113	10 x 20	1
4401-1325	350	0.048	162	300	190	300	49	204 x 123	10 x 20	1

Table 10-40 400 V SFF inductor specifications

Inductor part			Losses	L	D	Н	Weight	Fixing centres (x * y)	Fixing	-
number	Amps	mH	W	mm	mm	mm	kg	mm	mm	Fixing type
4401-0162	9.5	3.160	27	150	75	135	3.1	120 x 47	8 x 12	С
4401-0163	12	2.500	33	150	75	135	3.3	120 x 47	8 x 12	С
4401-0164	16	1.875	48	180	82	158	5.3	130 x 58	8 x 12	С
4401-0165	25	1.200								
4401-0166	34	0.880								
4401-0167	40	0.750								
4401-0168	46	0.650	69	180	116	179	9.8	130 x 84	8 x 12	С
4401-0169	60	0.500	98	240	110	247	20	200 x 80	11 x 20	С
4401-0170	77	0.390								
4401-0171	96	0.315	147	240	180	258	18	200 x 100	11 x 20	С
4401-0172	124	0.240	178	240	185	260	20	200 x 100	11 x 20	С
4401-0173	156	0.190	224	300	177	300	24	204 x 113	11 x 20	В
4401-0174	180	0.165	251	300	177	300	25	204 x 113	11 x 20	В
4401-0175	220	0.135	229	300	177	300	25	204 x 113	11 x 20	В
4401-0176	300	0.100	273	300	195	300	40	204 x 130	11 x 20	В
4401-1205	350	0.080								
4401-0301	437	0.067								
4401-0302	487	0.060	357	357	175	322	58	328 x 267	9 x 14	Α

			-							_		
Safety	1.1	Product	System	Mechanical	Electrical	Getting	0.0	B	Technical	Component	D'	UL
information	Introduction	Information	desian	Installation	Installation	started	Optimization	Parameters	data	sizing	Diagnostics	Information
IIIIOIIIIalioii		IIIIOIIIIalioii	uesign	IIIStaliation	IIIStaliation	Starteu			uala	Siziriy		IIIIOIIIIalioii

Table 10-41 575 V / 690 V SFF inductor specifications

Inductor part	Amps	mH	Losses	L	D	Н	Weight	Fixing centres (x * y)	Fixing	Fixing type
number	Allips	"""	W	mm	mm	mm	kg	mm	mm	I ixilig type
4401-1211	22	1.400	36	190	120	180	10	130 x 74	8 x 20	
4401-1213	36	1.400	81	255	160	240	16	200 x 80	10 x 20	1
4401-1214	43	1.200	86	255	170	240	20	200 x 90	10 x 20	1
4401-1215	52	1.000	93	255	180	240	22	200 x 100	10 x 20	1
4401-1216	63	0.800	95	255	190	240	25	200 x 100	10 x 20	1
4401-1217	85	0.600	122	300	180	300	37	204 x 113	10 x 20	В
4401-1218	100	0.500	190	300	180	300	37	204 x 120	4 x 10	- P
4401-1219	125	0.400	172	300	190	300	49	204 x 123	10 x 20	1
4401-1220	144	0.350	177	300	200	300	50	204 x 130	10 x 20	1
4401-1221	168	0.300	207	300	200	300	50	204 x 130	10 x 20	1
4401-1222	192	0.260	220	325	220	325	55	204 x 160	4 x 10	1
4401-1223	192	0.210	189	300	200	300	50	204 x 130	10 x 20	1
4401-0306	230	0.221	357	360	176	322	58	328 x 263	11 x 17	Α
4401-0307	281	0.181	375	360	176	322	66	328 x 263	11 x 17	Α

Switching frequency filter inductors

The following inductors are standard 3-phase inductors. They carry only 50/60 Hz current with a negligible amount of high frequency current.

NOTE

The switching frequency filter inductors need to be rated to the total current requirement of the system.

10.4.8 Switching frequency filter capacitors Switching frequency filter capacitor specification

Overload - I_{max} = 1.3 x I_{rated}

 $I_{inrush} = 200 x I_{rated}$

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
--------------------	--------------	---------------------	---------------	----------------------------	----------------------------	-----------------	--------------	------------	-------------------	------------------	-------------	-------------------

10.5 Electromagnetic compatibility (EMC)

This is a summary of the EMC performance of the drive. For full details, refer to the EMC Data Sheet which can be obtained from the supplier of the drive.

Table 10-42 Immunity compliance

Standard	Type of immunity	Test specification	Application	Level
IEC 61000-4-2 EN 61000-4-2:2009	Electrostatic discharge	6 kV contact discharge 8 kV air discharge	Module enclosure	Level 3 (industrial)
IEC 61000-4-3 EN 61000-4-3:2006+A2:2010	Radio frequency radiated field	10 V/m prior to modulation 80 - 1000 MHz 80 % AM (1 kHz) modulation	Module enclosure	Level 3 (industrial)
IEC 61000-4-4	Fast transient burst	5/50 ns 2 kV transient at 5 kHz repetition frequency via coupling clamp	Control lines	Level 4 (industrial harsh)
EN 61000-4-4:2012	i ast transient burst	5/50 ns 2 kV transient at 5 kHz repetition frequency by direct injection	Power lines	Level 3 (industrial)
JEO 04000 4 5		Common mode 4 kV 1.2/50 ms waveshape	AC supply lines: line to ground	Level 4
IEC 61000-4-5 EN 61000-4-5:2014	Surges	Differential mode 2 kV1.2/50 ms waveshape	AC supply lines: line to line	Level 3
		Lines to ground	Signal ports to ground 1	Level 2
IEC 61000-4-6 EN 61000-4-6:2014	Conducted radio frequency	10V prior to modulation 0.15 - 80 MHz 80 % AM (1 kHz) modulation	Control and power lines	Level 3 (industrial)
IEC 61000-4-11 EN 61000-4-11:2004	Voltage dips and interruptions	-30 % 10 ms +60 % 100 ms -60 % 1 s <-95 % 5 s	AC power ports	
IEC 61000-6-1 EN 61000-6-1:2007	Generic immunity standard - industrial environment	for the residential, commercial and light		Complies
IEC 61000-6-2 EN 61000-6-2:2005	Generic immunity standard	for the industrial environment		Complies
IEC 61800-3 EN 61800-3:2004+A1:2012	Product standard for adjust (immunity requirements)	table speed power drive systems	Meets immunity requirements	ents for first and

IEC 61800-3:2004 and EN 61800-3:2004+A1:2012

The 2004 revision of the standard uses different terminology to align the requirements of the standard better with the EC EMC Directive.

Power drive systems are categorized C1 to C4:

Category	Definition	Corresponding code used above
C1	Intended for use in the first or second environments	R
C2	Not a plug-in or movable device, and intended for use in the first environment only when installed by a professional, or in the second environment	I
C3	Intended for use in the second environment, not the first environment	E2U
C4	Intended for use in the second environment in a system rated at over 400A, or in a complex system.	E2R

Note that category 4 is more restrictive than E2R, since the rated current of the PDS must exceed 400 A or the supply voltage exceed 1000 V, for the complete PDS.

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
--------------------	--------------	---------------------	---------------	----------------------------	----------------------------	--------------------	--------------	------------	-------------------	------------------	-------------	-------------------

10.5.1 Optional external EMC filters

Table 10-43 EMC filter cross reference

Drive (model)	Part number
03200066 to 03200106	4200-3230
04200137 to 04200185	4200-0272
05200250	4200-0312
06200330 to 06200440	4200-2300
07200610 to 07200830	4200-1132
08201160 to 08201320	4200-1972
09201760 to 09202190 (9A)	4200-3021
10202830 to 10203000	4200-4460
03400078 to 03400100	4200-3480
04400150 to 04400172	4200-0252
05400270 to 05400300	4200-0402
06400350 to 06400470	4200-4800
07400660 to 07401000	4200-1132
08401340 to 08401570	4200-1972
09402000 to 09402240 (9A)	4200-3021
10402700 to 10403200	4200-4460
11403770 to 11404640	4200-0400
06500150 to 06500350	4200-3690
07500440 to 07500550	4200-0672
08500630 to 08500860	4200-1662
09501040 to 09501310 (9A)	4200-1660
10501520 to 10501900	4200-2210
11502000 to 11502850	4200-0690
07600190 to 07600540	4200-0672
08600630 to 08600860	4200-1662
09601040 to 09601310 (9A)	4200-1660
10601500 to 10601780	4200-2210
11602100 to 11602630	4200-0690

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
--------------------	--------------	---------------------	---------------	----------------------------	----------------------------	--------------------	--------------	------------	-------------------	------------------	-------------	-------------------

Table 10-44 Optional external EMC filter details

	-	continuous	Voltage	e rating			sipation at	Ground	leakage	
	cur	rent				rated o	current	Balanced		Ī
Part number	@ 40 °C (104 °F)	@ 50 °C (122 °F)	IEC	UL	IP rating	@ 40 °C (104 °F)	@ 50 °C (122 °F)	supply phase- to-phase and phase-to- ground	Worst case	Discharge resistors
	Α	Α	٧	V		W	W	mA	mA	MΩ
4200-3230	20	18.5	250	300		20	17	2.4	60	
4200-0272	27	24.8	250	300	1	33	28	6.8	137	1
4200-0312	31	28.5	250	300	20	20	17	2.0	80	1
4200-2300	55	51	250	300	20	41	35	4.2	69	1
4200-1132	117	102.7*	528	480		50	43.7	11.7	188	1
4200-1972	197	172.8*	528	480		42	36.7	18.7	210	1
4200-3021	302	277	528	480	00	34	29.7	30	202	1.68
4200-4460	446	409	528	480	- 00	37	32.4	30	283	1.00
4200-3480	16	15	528	600		13	11	10.7	151	1
4200-0252	25	23	528	600	20	28	24	11.1	182	1
4200-0402	40	36.8	528	600	20	47	40	18.7	197	1
4200-4800	63	58	528	600		54	46	11.2	183	
4200-0400	685	551	480	480	00	44	38.5	60.7	275	1
4200-3690	42	39	760	600		45	39	12	234	1
4200-0672	67	58.8*	759	600	20	25	21.9	24.5	395	
4200-1662	114	100*	759	600	1	39	34.1	24.3	364	
4200-1660	166	152	759	600		13	11.4	21	332	2.72
4200-2210	221	203	759	600	00	16	14	21	434	
4200-0690	403	368	690	N/A	1	28	24.5	25	583	1

^{*} At 55 °C (131 °F).

Table 10-45 Optional external EMC filter dimensions

			10/0	ah4				
Part number	Н		1	W		D	vve	ight
	mm	inch	mm	inch	mm	inch	kg	lb
4200-3230	426	16.77	83	3.27	41	1.61	1.9	4.20
4200-0272	437	17.20	123	4.84	60	2.36	4.0	8.82
4200-0312	437	17.20	143	5.63	60	2.36	5.5	12.13
4200-2300	434	17.09	210	8.27	60	2.36	6.5	14.30
4200-1132	270	10.63	90	3.54	150	5.90	6	13.2
4200-1972	300	11.81	120	4.72	170	6.69	9.6	21.2
4200-3021	339	13.3	230	9.06	120	4.72	11	24.3
4200-4460	105	4.13	360	14.2	245	9.6	12	26.5
4200-3480	426	16.77	83	3.27	41	1.61	2.0	4.40
4200-0252	437	17.20	123	4.84	60	2.36	4.1	9.04
4200-0402	437	17.20	143	5.63	60	2.36	5.5	12.13
4200-4800	434	17.09	210	8.27	60	2.36	6.7	14.80
4200-0400	135	5.32	386	15.2	260	10.2	14.7	32.41
4200-3690	434	17.09	210	8.27	60	2.36	7.0	15.40
4200-0672	270	10.63	90	3.54	150	5.90	6.2	13.7
4200-1662	300	11.81	120	4.72	170	6.69	9.4	20.7
4200-1660	360	14.2	245	9.6	105	4.13	5.2	11.5
4200-2210	105	4.13	360	14.2	245	9.6	10.3	22.7
4200-0690	135	5.32	386	15.2	260	10.2	16.75	36.9

Safety	Introduction	Product	-,	Mechanical	Electrical	Getting	Optimization	Parameters	Technical	Component	Diagnostics	UL Information
information		Information	design	Installation	Installation	started			data	sizing	g	Information

Table 10-46 Optional external EMC Filter terminal data

	Power con	nections	Ground connections			
Part number	Max cable size / Bar hole diameter	Max torque	Ground stud size	Max torque		
4200-0272	16 mm² (6 AWG)	1.8 N m (15.9 lb in)	M6	5.0 N m (44.3 lb in)		
4200-3230	4 mm² (12 A)A(C)	0.0 N m /7.1 lb in)	M5	2.5 N m (22.4 lb in)		
4200-3480	4 mm² (12 AWG)	0.8 N m (7.1 lb in)	CIVI	2.5 N m (22.1 lb in)		
4200-0122		2.3 N m (20.4 lb in)				
4200-0312		1.8 N m (15.9 lb in)				
4200-0402	16 mm² (6 AWG)	1.0 N III (15.9 III II)	M6	5.0 N m (44.3 lb in)		
4200-2300	10 mm (0 AVVG)			5.0 N III (44.5 ID III)		
4200-4800		2.3 N m (20.4 lb in)				
4200-3690						
4200-1132	50 mm² (1/0 AWG)	8.0 N m (70.9 lb in)	M10			
4200-0672	30 mm (1/0 AWG)	0.0 N III (70.9 ID III)				
4200-1972	95 mm² (3/0 AWG)	20 N m (177.1 lb in)				
4200-1662	95 mm (3/0 AVVG)	20 14 111 (177.1 10 111)		18 N m (159.4 lb in)		
4200-3021	10.8 mm		IVITO	10 14 111 (139.4 10 111)		
4200-1660	10.8 111111					
4200-4460	11 mm	30 N m (265.7 lb in)				
4200-2210		30 N III (203.7 ID III)				
4200-0400	10.5 mm	7	M12	25 N m (221.4 lb in)		
4200-0690	IIIII C.UI		IVIIZ	25 N III (221.4 10 111)		

10.5.2 Varistors

AC line voltage transients can typically be caused by the switching of large items of plant, or by lightening strikes on another part of the supply network. If these transients are not suppressed, they can cause damage to the insulation of the Regen inductors, or to the Regen drive electronics. Varistors should be fitted after the supply fuses and before the EMC filter as shown in the following.

Table 10-47 Varistors

Drive rating	Varistor voltage rating V _{RMS}	Energy rating J	Quantity per system	Configuration	Part number
200 V	550	620	3	Line to line	2482-3291
(200 V to 240 V±10 %)	680	760	3	Line to ground	2482-3211
400 V	550	620	3	Line to line	2482-3291
(380 V to 480 V±10 %)	680	760	3	Line to ground	2482-3211
575 V	680	760	3	Line to line	2482-3211
(500 V to 575 V±10 %)	1000	1200	3	Line to ground	2482-3218
690 V	385	550	6	2 in series line to line	2482-3262
(690 V±10 %)	1000	1200	3	Line to ground	2482-3218

Suitable DIN rail mounted surge protectors are also available from CITEL (DS40 series).

10.6 Combined Regen input filters (combi filter)

Table 10-48 Combi filter selection

	Model	Schaffner model number	Current rating	
Heavy duty	Normal duty	Schainler moder number	Α	
07400660 & 07400770	06400470 & 07400660	FS6085-83-35-2	83	
07401000 & 08401340*	07400770 & 07401000	FS6085-125-35-2	125	
08401570	08401340	FS6085-168-40-2	168	
09402000 & 09402240*	08401570 & 09402000*	FS6085-205-40-2	205	
10402700 & 10403200*	09402240 & 10402700*	FS6085-300-99-2	300	
	10403200*	FS6085-350-99-2	350	
10601780	10601500 & 10601780	FS6085 HV -200-40-2	200	

^{*} Output current derating must be applied based on Regen inductor and combi filter capability.

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
illioilliation		imormation	acsign	motaliation	motanation	Startou			auta	Sizirig		momation

Table 10-49 Combi filter ratings

Coheffinan madal mumban	Current rating	Voltage rating	Rated frequency
Schaffner model number	Α	Vac	Hz
FS6085-83-35-2	83	480	50/60
FS6085-125-35-2	125	480	50/60
FS6085-168-40-2	168	480	50/60
FS6085-205-40-2	205	480	50/60
FS6085-300-99-2	300	480	50/60
FS6085-350-99-2	350	480	50/60
FS6085 HV -200-40-2	200	690	50/60

Table 10-50 Combi filter SFF component values

	Compone	Losses	
Schaffner model number	SFF Ind uH	SFF Cap uF*	w
FS6085-83-35-2	84	3 x 20	98
FS6085-125-35-2	70	3 x 30	92
FS6085-168-40-2	44	3 x 40	133
FS6085-205-40-2	40	3 x 50	133
FS6085-300-99-2	25	3 x 80	180
FS6085-350-99-2	20	3 x 80	235
FS6085 HV -200-40-2	63	3 x 90	120

Table 10-51 Combi filter leakage current

0.1 %	Ground leakage						
Schaffner model number	Balanced supply (mA)**	Worst case (mA)					
FS6085-83-35-2	4.3	220					
FS6085-125-35-2	12.5	619					
FS6085-168-40-2	4.3	221					
FS6085-205-40-2	12.5	631					
FS6085-300-99-2	12.5	636					
FS6085-350-99-2	12.5	636					
FS6085 HV -200-40-2	16.5	820					

^{*} SFF caps wired in Delta configuration

NOTE

The range of combi filters covered in this section are available from Schaffner, the filters are not stocked by supplier of the drive.

Combi filters listed in Table 3-23 *Combi filter selection* on page 39 are equipped with an internal thermal switch to prevent the EMC filter inductor from overheating. The thermal switch must be configured to open the main supply contactor in the event of a thermal overload.

Regen inverter output current derating must be applied where necessary based on Regen inductor and combi filter capability. Models affected are denoted with * in Table 3-23 Combi filter selection on page 39. Combi filters listed in Table 3-23 are suitable for use in systems with less than 2 % THD $_v$ on the grid.

^{**} In accordance with IEC 60939-1

Safety information	Introduction Pro Inform	oduci System	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
--------------------	----------------------------	--------------	----------------------------	----------------------------	-----------------	--------------	------------	----------------	------------------	-------------	-------------------

11 Component sizing

11.1 Switching frequency filter (SFF) protection

For SFF branch circuit protection refer to section 3.9.3 Switching frequency filter capacitor on page 30.

11.2 Softstart resistor sizing

Table 11-1 DC bus capacitance and inductance values

Voltage	Model	Total DC bus capacitance	Total DC bus inductance	AC inductance per phase
voltage	Wodel	μF	mH	μН
	03200050	1560		
	03200066 to 03200106	1560		
	04200137 & 04200185	1760	0.5	
	05200250	1560	1.1	
200 V	06200330 & 06200440	3000	0.322	
	07200610 to 07200830	4680	0.253	
	08201160 & 08201320	7020		110
	09201760 & 09202190	10920		82*
	10202830 & 10203000	10920		
	03400025 to 0300045	220		
	0300062	390		
	03400078 & 03400106	390	1	
	04400150 & 04400172	660	1.331	
	05400270 & 05400300	780	1.1	
400.17	06400350 to 06400470	1500	0.644	
400 V	07400660 to 07401000	2340	0.423	
	08401340 & 08401570	3510		170
	09402000 & 09402240	5460		82*
	10402700 & 10403200	7020		
	11403770	8585		
	11404170 & 11404640	9360		
	05500030 to 05500069	260	2.685	
	06500150 & 06500190	500	1.57	
	06500230 to 06500350	1000	0.785	
575 V	07500440 & 07500550	780	1.27	
5/5 V	08500630 & 08500860	1300		520
	09501040 & 09501310	3120		240*
	10501520 & 10501900	3120		
	11502000 to 11502850	4160		
	07600190 to 07600540	780	1.27	
	08600630 & 08600860	1300		520
690 V	09601040 & 09601310	3120		240*
	10601500 & 10601780	3120		
	11602100 to 11602630	4160		

^{*} Frame size 9A only.

Where the Regen drive inrush current is to be controlled by an external softstart resistor / bypass circuit, the softstart resistance can be calculated using the procedure detailed in section 11.2.1 *Procedure* on page 309.

The softstart resistor must be calculated for multiple drive systems due to the increased inrush current where a Unidrive M Rectifier is not used.

A softstart resistor will also be required for applications where the total DC bus capacitance of the motoring drives is greater than that of the Regen drive (one large drive supplying several smaller drives).

Only pulse withstanding resistors should be used for charging the inverter system.

Safety Introduction Product System Mechani Information design Installati		Setting Optimization P	Parameters Technical data	sizing Diagnostics	Information
--	--	------------------------	---------------------------	--------------------	-------------

11.2.1 Procedure

The following procedure and data should be used to calculate the resistor(s) required:

- 1. Calculate the total DC bus capacitance of the system (refer to Table 11-1).
- 2. Calculate the energy stored in the systems DC bus capacitance at the maximum supply voltage.
- 3. Calculate the minimum number of resistors required to meet this energy value (round up to the nearest one).
- 4. Calculate the series parallel arrangement of resistors ensuring the total resistance is ≥ the minimum values given in Table 11-2.

DC bus capacitor energy is calculated from 0.5 x C_N x 1.2 x V_{BUS}^2 . Where C_N is the nominal DC bus capacitance (Table 11-1) and the 1.2 factor allows for capacitance tolerance. V_{BUS} is calculated from $\sqrt{2}$ x V_{LL} (+10 %) where V_{LL} is the nominal line to line AC voltage.

Table 11-2 Minimum softstart resistor value

Drive	Recommended minimum resistor value (Ω)
03200066	
03200080	
03200106	
03400025	
03400031	20
03400045	
03400062	
03400078	
03400100	
04200137	
04200185	20
04400150	30
04400172	
05200250	14
05400270	29
05400300	26
05500030	30
05500040	30
05500069	30
06200330	12
06200440	9
06400350	22
06400420	19
06400470	14
06500100	33
06500150	33
06500190	33
06500230	33
06500290	28
06500350	23
07200610	5
07200750	5
07200830	5
07400660	11
07400770	11
07401000	8
07500440	16
07500550	16
07600190	33
07600240	33
07600290	33
07600380	33
07600440	23
07600540	23
08201160	3

Safety information	Introduction	Produ Informa	uct System ation design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information		
	Drive				F	Recomme	nded minim	um resisto	r value (Ω)				
0	8201320						3	3						
0	8401340						5							
0	8401570						5	1						
0	8500630						1	1						
0	8500860						1	1						
0	8600630						1;	3						
0	8600860						1;	3						
0	9201760						2							
0	9202190						2							
0	9402000						3							
0	9402240						3							
0	9501040						8							
0	9501310						7	i						
0	9601040						10)						
0	9601310						8							
1	0202830						1							
1	0203000						1							
1	0402700						2							
1	0403200						2							
1	0501520						5	i						
1	0501900						4							
	0601500						6	i						
1	0601780						5							
1	1403770						1							
1	1404170						1							
1	1404640						1							
	1502000						3							
	1502540						3							
	1502850						3							
	1602100						4	ı.						
1	1602380						4							
			ı				_							

Example:

Unidrive M 10403200 regenerating onto a 480 Vac + 10 % supply with Unidrive M 10403200 motoring drive.

 $\begin{array}{ll} C_{N} & = 2 \ x \ 7020 \ \mu F \\ & = 14040 \ \mu F \\ V_{BUS} & = \sqrt{2} \ x \ 480 \ x \ 1.1 \end{array}$

= 747 V

11602630

Energy = $0.5 \times 14040 \times 10^{-6} \times 1.2 \times (747)^2$

= 4701 J

Using Metallux resistor PWR- R 500, 48 Ω

Energy rating = 1700 J (see Figure 11-1 *Pulse energy* on page 311).

Number of resistors required =

$$\frac{4701}{1700}$$
= 2,8

Three resistors are therefore required which may be connected in parallel. The equivalent resistance is 16 Ω which is above the minimum limit of 2 Ω for the Unidrive M 10403200.

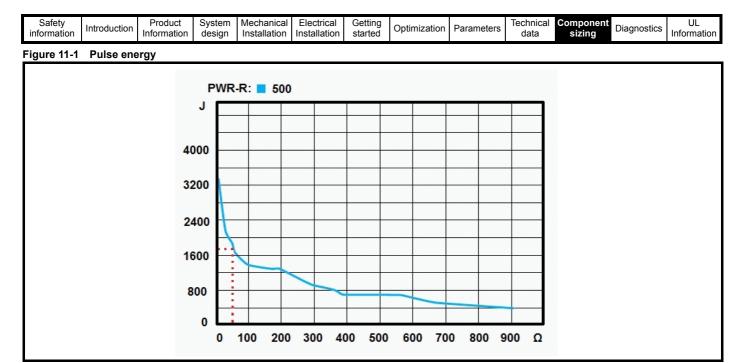
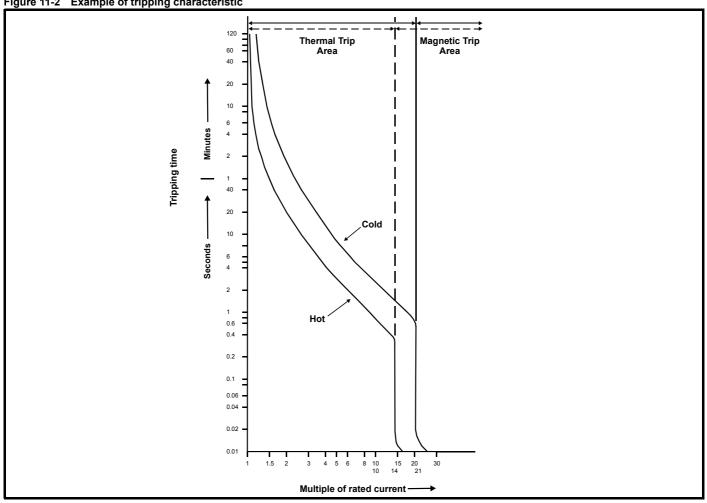


Figure 11-1 shows the relationship between the Metallux softstart resistor value and the energy rating. The recommended 48 Ω value gives an energy rating of 1700 J.


Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
--------------------	--------------	---------------------	---------------	----------------------------	----------------------------	--------------------	--------------	------------	----------------	------------------	-------------	-------------------

Thermal / magnetic overload protection for soft start circuit 11.3

Protection for the softstart circuit must be provided. The recommended protection is to use a miniature circuit breaker (MCB) having a thermal magnetic trip. The thermal part of the tripping mechanism protects against a high impedance short circuit and the magnetic part of the trip protects the resistor against a direct short circuit. The overload should be sized as following to provide thermal and magnetic protection:

Thermal / magnetic overload characteristics

Figure 11-2 Example of tripping characteristic

11.3.2 Sizing of magnetic overload

The magnetic overload should be selected to the peak current and charging time at power up with the trip being at for example 20 times the nominal rated current of the overload. Therefore for a 20 A peak current an MCB with a 1 A nominal current rating could be used.

The charging of a system takes a total of 5 time constants with this having a decaying exponential current due to the RC network, therefore at 5 time constants the system will have charged up with the current being at approximately zero.

The peak current and charge time during power up can be calculated using the following formula.

Example: Peak current

480 Vac supply +10 %, total softstart resistance of 16 Ω (3 x 48 Ω in parallel):

= Vac (+10 %) x 1.414 / Resistance_{softstart} Ipeak = (480 + 48) x 1.414 / 16 = 46.7A I_{peak}

Example: Charging time

Total softstart resistance of 16 Ω (3 x 48 Ω) in parallel, and a total DC bus capacitance of 14040 μ F

= Resistance_{softstart} x Total Capacitance_{DC bus} T_{constant}

0.225 $= 16 \times (14040 \times 10^{-6})$

T_{charge} = T_{constant} x 5 1.13 s $= 0.225 \times 5$

1	Cofoty		Droduct	Cuatam	Machanical	Flootrical	Cotting			Tochnical	Commonant		1.11
	Safety	Introduction	Product	System	Mechanical	Electrical	Getting	Optimization	Parameters	Technical	Component	Diagnostics	UL
	information	muoduction	Information	desian	Installation	Installation	started	Optimization	i aiaiiicicis	data	sizina	Diagnostics	Information

MCB Selection

From the above calculations for a peak charging current of 46.7 A with a charge time of 1.13 s a magnetic overload with the following characteristics could be used:

3 A nominal rating (46.7/20 = 2.335)

The exponential charging current for the soft start circuit must be checked against the MCB trip characteristic curve for the overload to ensure no spurious trips occur during charging time. Calculate the supply current throughout the start-up time (5 time constants):

Calculate the supply current at 0.1 s, 0.2 s, 0.4, 0.7 s and 1 s.

$$I(t) = I_{pk} \times e^{\left(\frac{-t}{R \times C}\right)}$$

Where:

I(t): Peak current at time = t seconds.

t = Time in seconds

Example: supply current throughout the start-up time

$$I(t) = 46.7 \times e^{\left(\frac{-t}{16 \times 14040 \times 10^{-6}}\right)}$$

Table 11-3 Supply current throughout the start-up time

Time s	Supply Current Apk
0.1	29.9
0.2	19.2
0.3	12.3
0.4	7.9
0.7	2.1
1	0.5

Note that these calculation times are based on a 1 s charge time. If the charge time not 1 s, then the time steps can be calculated as follows.

Time interval
t1 = 0.1 x t _{charge}
t2 = 0.2 x t _{charge}
t3 = 0.4 x t _{charge}
t4 = 0.7 x t _{charge}
t5 = t _{charge}

Compare the supply currents at time t1 to t5 with the circuit breaker worst-case trip characteristic. Make sure that the current is less than the trip curve for all the time intervals calculated.

Comparing the data from Table 11-3 with the tripping characteristic of the selected MCB, Figure 11-2 shows that the supply current is less than the MCB trip curves for each time interval.

11.3.3 Sizing of thermal overload

The thermal overload should be sized to provide protection against a high impedance short circuit. Under this condition the current flowing would not be high enough to result in the magnetic overload tripping, but the power dissipated would exceed the nominal power rating resulting in heating of the resistor.

In order to size the thermal overload correctly, the power rating and overload characteristics of the resistor are required. The power characteristic curve for the resistor should be converted from multiples of power to current in order to size the thermal overload correctly.

Check that the MCB prevents the resistor from overheating assume a system fault which results in a continuous power of 10 x the nominal power being dissipated by the resistor.

Resistor selected earlier was 3 x 48 Ω which is 16 Ω 1500 W

10 x nominal power = 15000 W

$$I_{P10} = \sqrt{\frac{15000}{16}} = 30,6A$$

MCB rating from previous selection was 3 A.

30.6 A is 10.2 x rated current.

From Figure 11-2 the MCB will trip in 3 s.

From the resistor manufacturers data shown in Figure 11-3,10.2 x rated power can be withstood for 3 s.



Figure 11-3 Example of overload characteristic

The MCB will protect the resistor.

Safety Product System Mechanical Electrical Getting Technical Component Diagnostics Introduction Optimization Parameters Information information design Installation Installation started sizing Information data

12 Diagnostics

The keypad display on the drive gives various information about the status of the drive. The keypad display provides information on the following categories:

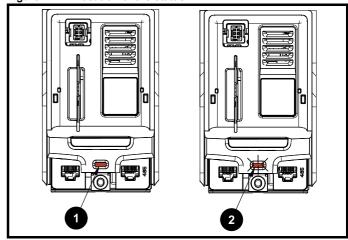
- · Trip indications
- · Alarm indications
- · Status indications

Users must not attempt to repair a drive if it is faulty, nor carry out fault diagnosis other than through the use of the diagnostic features described in this chapter.

If a drive is faulty, it must be returned to an authorized warning distributor for repair.

12.1 Status modes (Keypad and LED status)

Figure 12-1 Keypad status modes



- 1. Drive healthy status
- 2. Trip status
- 3. Alarm status

Figure 12-2 Location of the status LED

- 1. Non flashing: Normal status
- 2. Flashing: Trip status

12.2 Trip indications

The output of the drive is disabled under any trip condition so that the drive stops controlling the motor. If the motor is running when the trip occurs it will coast to a stop.

During a trip condition, where a KI-Keypad is being used, the upper row of the display indicates that a trip has occurred and the lower row of the keypad display will display the trip string. Some trips have a sub-trip number to provide additional information about the trip. If a trip has a sub-trip number, the sub-trip number is flashed alternately with the trip string unless there is space on the second row for both the trip string and the sub-trip number in which case both the trip string and sub-trip information is displayed separated by a decimal place.

The back-light of the KI-Keypad display will also flash during a trip condition. If a display is not being used, the drive LED Status indicator will flash with 0.5 s duty cycle if the drive has tripped. Refer to Figure 12-2.

Trips are listed alphabetically in Table 12-3 based on the trip indication shown on the drive display. Alternatively, the drive status can be read in Pr 10.001 'Drive healthy' using communication protocols. The most recent trip can be read in Pr 10.020 providing a trip number. It must be noted that the hardware trips (HF01 to HF20) do not have trip numbers. The trip number must be checked in Table 12-3 to identify the specific trip.

Example

- 1. Trip code 2 is read from Pr 10.020 via serial communications.
- 2. Checking Table shows Trip 2 is an Over Volts trip.

- 3. Look up Over Volts in Table 12-3.
- 4. Perform checks detailed under Diagnosis.

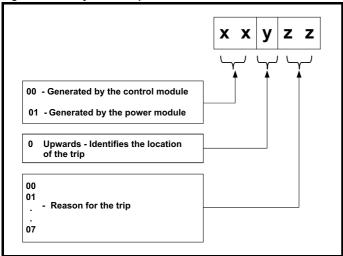
Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information	ı
--------------------	--------------	---------------------	---------------	----------------------------	----------------------------	--------------------	--------------	------------	----------------	------------------	-------------	-------------------	---

12.3 Identifying a trip / trip source

Some trips only contain a trip string whereas some other trips have a trip string along with a sub-trip number which provides the user with additional information about the trip.

A trip can be generated from a control system or from a power system. The sub-trip number associated with the trips listed in Table 12-1 is in the form xxyzz and used to identify the source of the trip.

Table 12-1 Trips associated with xxyzz sub-trip number


Over Volts	OHt dc bus
OI ac	Phase Loss
OI Brake	Power Comms
PSU	OI Snubber
OHt Inverter	Temp Feedback
OHt Power	Power Data
OHt Control	

The digits xx are 00 for a trip generated by the control system. For a single drive (not part of a multi-power module drive), if the trip is related to the power system then xx will have a value of 01, when displayed the leading zeros are suppressed.

The y digit is used to identify the location of a trip which is generated by a rectifier module connected to a power module (if xx is non zero). For a control system trip (xx is zero), the y digit, where relevant is defined for each trip. If not relevant, the y digit will have a value of zero.

The zz digits give the reason for the trip and are defined in each trip description.

Figure 12-3 Key to sub-trip number

For example, if the drive has tripped and the lower line of the display shows 'OHt Control.2', with the help of Table 12-2 below the trip can be interpreted as; an over temperature has been detected; the trip was generated by fault in the control module, the control board thermistor 2 over temperature.

Table 12-2 Sub-trip identification

Source	XX	у	ZZ	Description
Control system	00	0	01	Control board thermistor 1 over temperature
Control system	00	0	02	Control board thermistor 2 over temperature
Control system	00	0	03	Control board thermistor 3 over temperature

Safety	Introduction	Product	System	Mechanical	Electrical	Getting	Optimization	Parameters	Technical	Component	Diagnostics	UL
information	introduction	Information	design	Installation	Installation	started	Optimization	1 didilicicis	data	sizing	Diagnostics	Information

Trips, Sub-trip numbers 12.4

Table 12-3 Trip indic	ations
Trip	Diagnosis
An Input 1 Loss	Analog input 1 current loss
	An Input 1 Loss trip indicates that a current loss was detected in current mode on Analog input 1 (Terminal 5, 6). In 4-20 mA
	and 20-4 mA modes loss of input is detected if the current falls below 3 mA.
28	Recommended actions:
20	Check control wiring is correct Check control wiring is correct.
	 Check control wiring is undamaged Check the Analog Input 1 Mode (07.007)
	Current signal is present and greater than 3 mA
An Input 2 Loss	Analog input 2 current loss
	An Input 2 Loss indicates that a current loss was detected in current mode on Analog input 2 (Terminal 7). In 4-20 mA and
	20-4 mA modes loss of input is detected if the current falls below 3 mA.
22	Recommended actions:
29	Check control wiring is correct
	 Check control wiring is undamaged Check the Analog Input 2 Mode (07.011)
	Current signal is present and greater than 3 mA
An Output Calib	Analog output calibration failed
·	The zero offset calibration of one or both of the analog outputs has failed. This indicates that the drive hardware has failed
	or a voltage is applied to the output via a low impedance, possibly due to a wiring error. The failed output can be identified
	by the sub-trip number.
	Sub-trip Reason
219	1 Output 1 failed (Terminal 9)
219	2 Output 2 failed (Terminal 10)
	Recommended actions:
	Check the wiring associated with analog outputs
	Remove all the wiring that is connected to analog outputs and perform a re-calibration by power cycling the drive.
	If trip persists replace the drive
App Menu Changed	
	The App Menu Changed trip indicates that the customization table for an application menu has changed. The menu that
	has been changed can be identified by the sub-trip number. Sub-trip Reason
	<u>' </u>
	1 Menu 18
217	2 Monu 10
	2 Menu 19
	3 Menu 20
	3 Menu 20 If more than one menu has changed the lowest menu has priority. Drive user parameters must be saved to prevent this trip
	3 Menu 20 If more than one menu has changed the lowest menu has priority. Drive user parameters must be saved to prevent this trip on the next power-up.
	3 Menu 20 If more than one menu has changed the lowest menu has priority. Drive user parameters must be saved to prevent this trip on the next power-up. Recommended actions:
	3 Menu 20 If more than one menu has changed the lowest menu has priority. Drive user parameters must be saved to prevent this trip on the next power-up. Recommended actions: Reset the trip and perform a parameter save to accept the new settings
Brake R Too Hot	If more than one menu has changed the lowest menu has priority. Drive user parameters must be saved to prevent this trip on the next power-up. Recommended actions: Reset the trip and perform a parameter save to accept the new settings Braking resistor overload timed out (I²t)
Brake R Too Hot	If more than one menu has changed the lowest menu has priority. Drive user parameters must be saved to prevent this trip on the next power-up. Recommended actions: Reset the trip and perform a parameter save to accept the new settings Braking resistor overload timed out (I²t) The Brake R Too Hot indicates that braking resistor overload has timed out. The value in Braking Resistor Thermal
Brake R Too Hot	If more than one menu has changed the lowest menu has priority. Drive user parameters must be saved to prevent this trip on the next power-up. Recommended actions: Reset the trip and perform a parameter save to accept the new settings Braking resistor overload timed out (I²t)
	If more than one menu has changed the lowest menu has priority. Drive user parameters must be saved to prevent this trip on the next power-up. Recommended actions: Reset the trip and perform a parameter save to accept the new settings Braking resistor overload timed out (I²t) The Brake R Too Hot indicates that braking resistor overload has timed out. The value in Braking Resistor Thermal Accumulator (10.039) is calculated using Braking Resistor Rated Power (10.030), Braking Resistor Thermal Time Constant
Brake R Too Hot 19	If more than one menu has changed the lowest menu has priority. Drive user parameters must be saved to prevent this trip on the next power-up. Recommended actions: Reset the trip and perform a parameter save to accept the new settings Braking resistor overload timed out (I²t) The Brake R Too Hot indicates that braking resistor overload has timed out. The value in Braking Resistor Thermal Accumulator (10.039) is calculated using Braking Resistor Rated Power (10.030), Braking Resistor Thermal Time Constant (10.031) and Braking Resistor Resistance (10.061). The Brake R Too Hot trip is initiated when Braking Resistor Thermal
	If more than one menu has changed the lowest menu has priority. Drive user parameters must be saved to prevent this trip on the next power-up. Recommended actions: Reset the trip and perform a parameter save to accept the new settings Braking resistor overload timed out (I²t) The Brake R Too Hot indicates that braking resistor overload has timed out. The value in Braking Resistor Thermal Accumulator (10.039) is calculated using Braking Resistor Rated Power (10.030), Braking Resistor Thermal Time Constant (10.031) and Braking Resistor Resistance (10.061). The Brake R Too Hot trip is initiated when Braking Resistor Thermal Accumulator (10.039) reaches 100 %. Recommended actions: Ensure the values entered in Pr 10.030, Pr 10.031 and Pr 10.061 are correct
	If more than one menu has changed the lowest menu has priority. Drive user parameters must be saved to prevent this trip on the next power-up. Recommended actions: Reset the trip and perform a parameter save to accept the new settings Braking resistor overload timed out (I²t) The Brake R Too Hot indicates that braking resistor overload has timed out. The value in Braking Resistor Thermal Accumulator (10.039) is calculated using Braking Resistor Rated Power (10.030), Braking Resistor Thermal Time Constant (10.031) and Braking Resistor Resistance (10.061). The Brake R Too Hot trip is initiated when Braking Resistor Thermal Accumulator (10.039) reaches 100 %. Recommended actions: Ensure the values entered in Pr 10.030, Pr 10.031 and Pr 10.061 are correct If an external thermal protection device is being used and the braking resistor software overload protection is not
19	If more than one menu has changed the lowest menu has priority. Drive user parameters must be saved to prevent this trip on the next power-up. Recommended actions: Reset the trip and perform a parameter save to accept the new settings Braking resistor overload timed out (I²t) The Brake R Too Hot indicates that braking resistor overload has timed out. The value in Braking Resistor Thermal Accumulator (10.039) is calculated using Braking Resistor Rated Power (10.030), Braking Resistor Thermal Time Constant (10.031) and Braking Resistor Resistance (10.061). The Brake R Too Hot trip is initiated when Braking Resistor Thermal Accumulator (10.039) reaches 100 %. Recommended actions: Ensure the values entered in Pr 10.030, Pr 10.031 and Pr 10.061 are correct If an external thermal protection device is being used and the braking resistor software overload protection is not required, set Pr 10.030, Pr 10.031 or Pr 10.061 to 0 to disable the trip.
	If more than one menu has changed the lowest menu has priority. Drive user parameters must be saved to prevent this trip on the next power-up. Recommended actions: Reset the trip and perform a parameter save to accept the new settings Braking resistor overload timed out (I²t) The Brake R Too Hot indicates that braking resistor overload has timed out. The value in Braking Resistor Thermal Accumulator (10.039) is calculated using Braking Resistor Rated Power (10.030), Braking Resistor Thermal Time Constant (10.031) and Braking Resistor Resistance (10.061). The Brake R Too Hot trip is initiated when Braking Resistor Thermal Accumulator (10.039) reaches 100 %. Recommended actions: Ensure the values entered in Pr 10.030, Pr 10.031 and Pr 10.061 are correct If an external thermal protection device is being used and the braking resistor software overload protection is not required, set Pr 10.030, Pr 10.031 or Pr 10.061 to 0 to disable the trip.
19	If more than one menu has changed the lowest menu has priority. Drive user parameters must be saved to prevent this trip on the next power-up. Recommended actions: Reset the trip and perform a parameter save to accept the new settings Braking resistor overload timed out (I²t) The Brake R Too Hot indicates that braking resistor overload has timed out. The value in Braking Resistor Thermal Accumulator (10.039) is calculated using Braking Resistor Rated Power (10.030), Braking Resistor Thermal Time Constant (10.031) and Braking Resistor Resistance (10.061). The Brake R Too Hot trip is initiated when Braking Resistor Thermal Accumulator (10.039) reaches 100 %. Recommended actions: Ensure the values entered in Pr 10.030, Pr 10.031 and Pr 10.061 are correct If an external thermal protection device is being used and the braking resistor software overload protection is not required, set Pr 10.030, Pr 10.031 or Pr 10.061 to 0 to disable the trip. NV Media Card Write fail The Card Access trip indicates that the drive was unable to access the NV Media Card. If the trip occurs during the data
19	If more than one menu has changed the lowest menu has priority. Drive user parameters must be saved to prevent this trip on the next power-up. Recommended actions: Reset the trip and perform a parameter save to accept the new settings Braking resistor overload timed out (I²t) The Brake R Too Hot indicates that braking resistor overload has timed out. The value in Braking Resistor Thermal Accumulator (10.039) is calculated using Braking Resistor Rated Power (10.030), Braking Resistor Thermal Time Constant (10.031) and Braking Resistor Resistance (10.061). The Brake R Too Hot trip is initiated when Braking Resistor Thermal Accumulator (10.039) reaches 100 %. Recommended actions: Ensure the values entered in Pr 10.030, Pr 10.031 and Pr 10.061 are correct If an external thermal protection device is being used and the braking resistor software overload protection is not required, set Pr 10.030, Pr 10.031 or Pr 10.061 to 0 to disable the trip. NV Media Card Write fail The Card Access trip indicates that the drive was unable to access the NV Media Card. If the trip occurs during the data transfer to the card then the file being written may be corrupted. If the trip occurs when the data being transferred to the drive then the data transfer may be incomplete. If a parameter file is transferred to the drive and this trip occurs during the
19 Card Access	If more than one menu has changed the lowest menu has priority. Drive user parameters must be saved to prevent this trip on the next power-up. Recommended actions: Reset the trip and perform a parameter save to accept the new settings Braking resistor overload timed out (I²t) The Brake R Too Hot indicates that braking resistor overload has timed out. The value in Braking Resistor Thermal Accumulator (10.039) is calculated using Braking Resistor Rated Power (10.030), Braking Resistor Thermal Time Constant (10.031) and Braking Resistor Resistance (10.061). The Brake R Too Hot trip is initiated when Braking Resistor Thermal Accumulator (10.039) reaches 100 %. Recommended actions: Ensure the values entered in Pr 10.030, Pr 10.031 and Pr 10.061 are correct If an external thermal protection device is being used and the braking resistor software overload protection is not required, set Pr 10.030, Pr 10.031 or Pr 10.061 to 0 to disable the trip. NV Media Card Write fail The Card Access trip indicates that the drive was unable to access the NV Media Card. If the trip occurs during the data transfer to the card then the file being written may be corrupted. If the trip occurs when the data being transferred to the drive then the data transfer may be incomplete. If a parameter file is transferred to the drive and this trip occurs during the transfer, the parameters are not saved to non-volatile memory, and so the original parameters can be restored by powering
19	If more than one menu has changed the lowest menu has priority. Drive user parameters must be saved to prevent this trip on the next power-up. Recommended actions: Reset the trip and perform a parameter save to accept the new settings Braking resistor overload timed out (I²t) The Brake R Too Hot indicates that braking resistor overload has timed out. The value in Braking Resistor Thermal Accumulator (10.039) is calculated using Braking Resistor Rated Power (10.030), Braking Resistor Thermal Time Constant (10.031) and Braking Resistor Resistance (10.061). The Brake R Too Hot trip is initiated when Braking Resistor Thermal Accumulator (10.039) reaches 100 %. Recommended actions: Ensure the values entered in Pr 10.030, Pr 10.031 and Pr 10.061 are correct If an external thermal protection device is being used and the braking resistor software overload protection is not required, set Pr 10.030, Pr 10.031 or Pr 10.061 to 0 to disable the trip. NV Media Card Write fail The Card Access trip indicates that the drive was unable to access the NV Media Card. If the trip occurs during the data transfer to the card then the file being written may be corrupted. If the trip occurs when the data being transferred to the drive then the data transfer may be incomplete. If a parameter file is transferred to the drive and this trip occurs during the transfer, the parameters are not saved to non-volatile memory, and so the original parameters can be restored by powering the drive down and up again.
19 Card Access	If more than one menu has changed the lowest menu has priority. Drive user parameters must be saved to prevent this trip on the next power-up. Recommended actions: Reset the trip and perform a parameter save to accept the new settings Braking resistor overload timed out (I²t) The Brake R Too Hot indicates that braking resistor overload has timed out. The value in Braking Resistor Thermal Accumulator (10.039) is calculated using Braking Resistor Rated Power (10.030), Braking Resistor Thermal Time Constant (10.031) and Braking Resistor Resistance (10.061). The Brake R Too Hot trip is initiated when Braking Resistor Thermal Accumulator (10.039) reaches 100 %. Recommended actions: Ensure the values entered in Pr 10.030, Pr 10.031 and Pr 10.061 are correct If an external thermal protection device is being used and the braking resistor software overload protection is not required, set Pr 10.030, Pr 10.031 or Pr 10.061 to 0 to disable the trip. NV Media Card Write fail The Card Access trip indicates that the drive was unable to access the NV Media Card. If the trip occurs during the data transfer to the card then the file being written may be corrupted. If the trip occurs when the data being transferred to the drive then the data transfer may be incomplete. If a parameter file is transferred to the drive and this trip occurs during the transfer, the parameters are not saved to non-volatile memory, and so the original parameters can be restored by powering the drive down and up again. Recommended actions:
19 Card Access	If more than one menu has changed the lowest menu has priority. Drive user parameters must be saved to prevent this trip on the next power-up. Recommended actions: Reset the trip and perform a parameter save to accept the new settings Braking resistor overload timed out (I²t) The Brake R Too Hot indicates that braking resistor overload has timed out. The value in Braking Resistor Thermal Accumulator (10.039) is calculated using Braking Resistor Rated Power (10.030), Braking Resistor Thermal Time Constant (10.031) and Braking Resistor Resistance (10.061). The Brake R Too Hot trip is initiated when Braking Resistor Thermal Accumulator (10.039) reaches 100 %. Recommended actions: Ensure the values entered in Pr 10.030, Pr 10.031 and Pr 10.061 are correct If an external thermal protection device is being used and the braking resistor software overload protection is not required, set Pr 10.030, Pr 10.031 or Pr 10.061 to 0 to disable the trip. NV Media Card Write fail The Card Access trip indicates that the drive was unable to access the NV Media Card. If the trip occurs during the data transfer to the card then the file being written may be corrupted. If the trip occurs when the data being transferred to the drive then the data transfer may be incomplete. If a parameter file is transferred to the drive and this trip occurs during the transfer, the parameters are not saved to non-volatile memory, and so the original parameters can be restored by powering the drive down and up again.

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information			
Ti	rip						Diagnosi	s							
Card	Boot	The Menu	0 param	eter modifi	cation can	not be sa	ved to the N	V Media Ca	ırd						
1'	77	The Card E and Pr 11.0 the new pa subsequen Recomme	Boot trip volume 1800 t	for auto or value. This of the constitutions:	a write to a l boot mode, occurs when	Menu 0 pa but the nan Pr 11.0 4	arameter has ecessary boo 12 is changed eset the drive	t file has no to Auto (3)	t been crea or Boot (4	ated on the N) mode, but	NV Media C the drive is	ard to take not			
Card	Busy							v an option	module						
	78	The Card E already bei	IV Media Card cannot be accessed as it is being accessed by an option module The Card Busy trip indicates that an attempt has been made to access a file on NV Media Card, but the NV Media Card is Ilready being accessed by an option module. No data is transferred. Recommended actions: Wait for the option module to finish accessing the NV Media Card and re-attempt the required function												
Card C	ompare							zaru anu re-	attempt th	e required to	Inction				
	88	A compare the NV Med Recomme	A compare has been carried out between a file on the NV Media Card, a Card Compare trip is initiated if the parameters on the NV Media Card are different to the drive. Recommended actions: Set Pr mm.000 to 0 and reset the trip Check to ensure the correct data block on the NV Media Card has been used for the compare.												
Card Da	ta Exists	NV Media													
1	79	already cor Recomment • Erase t	The Card Data Exists trip indicates that an attempt has been made to store data on a NV Media Card in a data block which already contains data. The data should be erased from the card first to prevent this trip. Recommended actions: Erase the data in data location Write data to an alternative data location												
Card Dri	ive Mode						n current dri	ve mode							
	87	different fro NV Media (Recomme • Ensure • Clear th	om the cu Card to the nded act the dest ne value	rrent drive r ne drive if th tions: ination drive in Pr mm.00	mode. This e operating e supports to the support to the suppo	trip is also mode in the drive o		an attempt ik is outside	s made to the allowe ameter file	transfer para d range of o	ameters fro	m a			
Cord	Evvev					ie is the s	ame as the s	ource paran	neter file						
Card	Error	The Card E the data str (if it exists)	Error trip i ucture or and crea	n the card. F Ite the corre	at an attemp Resetting th ect folder str	is trip will ucture. O	n made to ac cause the dri n an SD card ated. The foll	ive to erase , whilst this	the <mcd trip is still </mcd 	F> folder fro present, miss	om the NV n sing directo	nedia card ries will be			
		Sub-tri	р				F	Reason							
1	82	1					e is not prese	ent							
		3		e <000> file	•		older have th	e same file i	identification	on number					
	I For	Recomme Erase a Ensure Replace	nded act all the da the card e the NV	tions: ta block and is located of Media Card	I re-attempt			- Same ine							
Card	i Full	NV Media			an attempt	hae hoon	made to oro	ate a data h	lock on a !	JV Madia Co	ard but the	e is not			
1:	84	enough spa Recomment • Delete	The Card Full trip indicates that an attempt has been made to create a data block on a NV Media Card, but there is not enough space left on the card. Recommended actions: Delete a data block or the entire NV Media Card to create space Use a different NV Media Card												
Card N	lo Data			a not found											
	83	The Card No No data is t	lo Data ti transferre nded act	rip indicates ed. :ions:	that an atte	empt has	been made to	access no	n-existent	file or block	on a NV Me	edia Card.			
		- Ensure	uala DIO	ck number i	s correct										

Safety information Intro	oduction	Product Syste Information design		Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics UL Information
Trip						Diagnosi	s			
Card Optio	on	NV Media Card	trip; option me	odules inst	alled are			ce drive a	nd destinat	tion drive
180		the drive, but the data transfer, but the values from the values from the commended Ensure the commended Press the recommended	option module is a warning the card. This tractions: orrect option modules direct button to	categories at the data rip also appl odules are in the sate acknowled	are differ for the op ies if a co installed. ame optic lge that th	ent between tion modules impare is atte n module slo e parameter	source and of that are differented between the between two between the between	destination ferent will be ween the da ameter set more of the	n drives. This be set to the ata block and stored.	m a NV Media Card to s trip does not stop the default values and not d the drive.
Card Produ		NV Media Card		•						
		If Drive Derivativ initiated either at Sub-trip	If <i>Drive Deriva</i> power-up or w	tive (11.028)	d is acces) is difference Card is a	ent between t	Reason he source are talls trans	ne followin nd target d	g sub-trip nu rives, this tri nce this is a	ves then this trip is umbers: p is initiated either at warning trip; the trip drive (this applies the
175		2	warning suppression flag to the card). If <i>Product Type</i> (11.063) is different between the source and target drives or if corruption is detected in the parameter file, this trip is initiated either at power-up or when the SD Card is accessed. This trip can be reset but no data are transferred in either direction between the drive and the card. A Unidrive SP parameter value was found that has no equivalent parameter on the destination drive. Data is still transferred, since this is a warning trip; the trip can be suppressed by entering code 9666 in							
		Pr xx.000, and resetting the drive (this applies the warning suppression flag to the card). Recommended actions: Use a different NV Media Card This trip can be suppressed by setting Pr mm.000 to 9666 and resetting the drive								
Card Ratin	ıg									
186		NV Media Card Trip; The voltage and / or current rating of the source and destination drives are different The Card Rating trip indicates that parameter data is being transferred from a NV Media Card to the drive, but the current and / or voltage ratings are different between source and destination drives. This trip also applies if a compare (using Pr mm.000 set to 8yyy) is attempted between the data block on a NV Media Card and the drive. The Card Rating trip does not stop the data transfer but is a warning that rating specific parameters with the RA attribute may not be transferred to the destination drive. Recommended actions: Reset the drive to clear the trip Ensure that the drive rating dependent parameters have transferred correctly								
						0 to 9666 an	d resetting t	the drive.		
Card Read O		 This trip can be suppressed by setting Pr mm.000 to 9666 and resetting the drive. NV Media Card has the Read Only bit set The Card Read Only trip indicates that an attempt has been made to modify a read-only NV Media Card or a read-only data block. A NV Media Card is read-only if the read-only flag has been set. Recommended actions: Clear the read only flag by setting Pr mm.000 to 9777 and reset the drive. This will clear the read-only flag for all data blocks in the NV Media Card 								
			be suppressed							
Card Slot			o is initiated, if to on module doe ot number.	he transfer	of an opti	on module ap	oplication pro	ogram to o		plication module failed sub-trip indicating the
			ource / destina	tion option r	module is	installed on	the correct s	slot		

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
Tı	rip						Diagnosi	S				
Config	uration	The numb	er of pov	ver module	s installed	is differe	ent from the	modules ex	cpected			
1	11	stored. The Recommer Ensure Ensure Ensure Set Pr This trip is defined by of external Recommer Ensure	e sub-trip nded act that all t e all the p that the 11.035 to also initia Number (rectifiers nded act	value indications: the power modul value in Pr to the disable ted if the no Of Rectifiers that should tions: the external	odules are es have por 11.071 is se the trip if i umber of ex Expected be connected rectifiers ar	correctly wered up et to the n it is not retternal rec (11.096). It ted.	correctly umber of pov	s expected. ver modules sted to each eason for the	connected power moetrip the su	d dule is less	than the nur	mber
Contro	ol Word	Trip initiate	ed from	the <i>Contro</i>	l Word (06.	042)						
3	85	(Pr 06.043 Recomme Check Disable Bit 12 of the	= On). nded act the value the control	cions: e of Pr 06.04 trol word in word set to	12. Control Wo a one caus	<i>rd Enable</i> es the dri	(Pr 06.043) ve to trip on the cleared by	Control Word	d	the control	word is ena	bled
Curren	t Offset			offset error			,					
2:	25	Sub-tri 1 2 3 Recomme	een dete	Phase U V W	sibility of cu	rrent flow	d correctly. The direction in the outle					
Data Cl	hanging	Drive para	meters a	re being cl	nanged							
9	0 7	Drive parameters are being changed A user action or a file system write is active that is changing the drive parameters and the drive has been commanded enable, i.e. Drive Active (10.002) = 1. The user actions that change drive parameters are loading defaults, changing drive mode, or transferring data from an NV memory card or a position feedback device to the drive. The file system actions the will cause this trip to be initiated if the drive is enabled during the transfer are writing a parameter or macro file to the drive or transferring a derivative or user program to the drive. It should be noted that none of these actions can be started if the drive is active, and so the trip only occurs if the action is started and then the drive is enabled. Recommended actions: Ensure the drive is not enabled when one of he following is being carried out: Loading defaults										ging drive actions that the drive,
		ChangiTransfeTransfe	ing drive erring dat erring use	mode a from NV N er programs		•	n feedback d					
Deriva	ative ID						with derivat					
		-		vith the ider as follows:		iated with	derivative im	age which c	ustomizes	the drive. T	he reason fo	or the trip is
2.	47	Sub-tri						Reason				
2		2 3	Th	ere should l e identifier i e derivative	s out of ran	ge.	in the produ	ct but this ha	as been er	ased.		
I		L			- 3		J					

	Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
--	--------------------	--------------	------------------------	---------------	----------------------------	----------------------------	--------------------	--------------	------------	----------------	------------------	-------------	-------------------

Trip		Diagnosis						
Derivative Image	Derivative Ima	ge error						
	The <i>Derivative</i> the reason for t	Image trip indicates that an error has been detected in the trip	he derivative image. The sub-trip number indicates					
	Sub-trip	Reason	Comments					
	1 to 52	An error has been detected in the derivative image,						
	1 10 32	contact the supplier of the drive.						
	61	The option module fitted in slot 1 is not allowed with the derivative image						
	62	The option module fitted in slot 2 is not allowed with the derivative image	Occurs when the drive powers-up or the image					
	63	The option module fitted in slot 3 is not allowed with the derivative image	is programmed. The image tasks will not run.					
	64	The option module fitted in slot 4 is not allowed with the derivative image						
248	70	An option module that is required by the derivative image is not fitted in any slot						
	71	An option module specifically required to be fitted in slot 1 not present						
	An option module specifically required to be fitted in slot 2 not present An option module specifically required to be fitted in slot 2 not present Occurs when the drive powers-up or the image is programmed. The image tasks will not run.							
	73	An option module specifically required to be fitted in slot 3 not present						
	74	An option module specifically required to be fitted in slot 4 not present						
	80 to 81	An error has been detected in the derivative image, contact the supplier of the drive.						
	Recommende	d action:						
	Contact the sup	oplier of the drive						
Destination		arameters are writing to the same destination param						
		n trip indicates that destination output parameters of two are writing to the same parameter.	or more logic functions (Menus 5, 7, 8, 9, 12 or 14)					
199	Recommende	·						
	Set Pr mm.	.000 to 'Destinations' or 12001 and check all visible para	ameters in all menus for parameter write conflicts					
Drive Size	Power stage re	ecognition: Unrecognized drive size						
	The <i>Drive Size</i> connected.	trip indicates that the control PCB has not recognized the	e drive size of the power circuit to which it is					
224	Recommende	d action:						
		drive is programmed to the latest firmware version ault - return drive to supplier						

Safety information	Introduction		stem sign	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
Tr	in						Diagnosi	s				
EEPRO	•	Default param	eters	have beer	n loaded		Diag.ioo.					
		The <i>EEPROM</i>				It parame	ters have bee	en loaded. T	he exact o	ause/reason	of the trip	can be
		identified from	the s	ub-trip num	ber.							
		Sub-trip						Reason				
		1		_	_					umber has ch	-	
		2			cannot be l		r data stored	ın ınternai r	ion-voiatile	memory ind	icate that a	a valid set
		3					nal non-volati ow the previo			the allowed ra	ange for the	e product
		4	Th	e drive deri	vative imag	e has cha	nged					
		5			ige hardwar		_					
		6			O hardware		-					
		7					dware has ch	nanged				
		8			ard hardwa		anged er area of the	EEDDOM	has failed			
3	1		1111	e checksun	TOTI THE HOL	і-рагаппец	ei alea oi tile	EEFROW	ilas ialieu			
		The drive holds If the last bank If one of these parameters wh corrupt the dat	of eit trips o en re	ther set of poccurs the pequested by	parameters to parameters the user ar	that was s values thand if the po	aved is corru t were last sa	pted a User aved succes	Save or F sfully are	Power Down : used. It can to	Save trip is ake some ti	produced. ime to save
		conditions give data that has b	If both banks of user save parameters or both banks of power down save parameters are corrupted or one of the other conditions given in the table above occurs EEPROM Fail.xxx trip is produced. If this trip occurs it is not possible to use data that has been saved previously, and so the drive will be in lowest allowed drive mode with default parameters. The can only be reset if Pr mm.000 (mm.000) is set to 10, 11, 1233 or 1244 or if <i>Load Defaults</i> (11.043) is set to a non-zero								e to use the ers. The trip	
		Recommende	d act	ions:								
		Default the	drive	e and perfor	m a reset							
		Allow suffice	cient 1	time to perfo	orm a save		supply to the	e drive is re	moved			
T-d	al Tala				rive to supp	lier						
Extern	ai irip	An External tr	•		The cause o	f the trip o	ean ha idantifi	ad from the	cub trip pu	ımbor dienlay	od after the	o trip etripa
		See table belo					d by writing a	value of 6 i			eu aitei tiit	e trip string.
		Sub-trip			4 / /00 04	10) 1		Reason				
		1		•	•	•	3 and Safe To 3 and Safe To		•			
		3					3 and Sale 10	orque On in	put 2 is iov	N .		
6	;		External Trip (10.032) = 1									
		Recommende	d act	ions:								
			neck the Safe Torque Off signal voltage on terminal 31 equals to 24 V neck the value of Pr 08.009 which indicates the digital state of terminal 31, equates to 'on'.									
							J		· •			
		 Check the 	value	ip detection of the Safe Torque Off input is not required, set Pr 08.010 to Off (0). alue of Pr 10.032 .								
			Destinations' (or enter 12001) in Pr mm.000 and check for a parameter controlling Pr 10.032. Pr 10.032 or Pr 10.038 (= 6) is not being controlled by serial comms									
HF	01	Data processi			, ,		controlled by	/ serial comi	ms			
Tril.	0 1	The <i>HF01</i> trip					s occurred T	his trip indic	cates that	the control Po	CB on the o	drive has
		failed.			444100	- J. 101 114	_ 555an 6a. 1	arp mak			511 410 (
		Recommende	d act	ions:								
		Hardware	fault -	- Contact th	e supplier o	of the drive	Э					
HF	02	Data processi	_									
		The HF02 trip	indica	ntes that a D	MAC addre	ess error h	nas occurred.	This trip inc	dicates tha	t the control	PCB on the	e drive has
		failed.										
		Recommende										
	00				e supplier o		9					
HF	03	Data processi					ourrod This to	in indiactes	that the sec	atrol DOD are t	ho drive b-	o foiled
		The <i>HF03</i> trip in Recommende			egai instruct	ion nas oc	currea. This tr	ip indicates t	ınat the coi	ILLOI PUB ON T	ne anve na	s railed.
					e supplier o	of the drive	Э					
		ļ			- ''							

Safety Introduction	Product InformationSystem designMechanical InstallationElectrical InstallationGetting startedOptimizationParametersTechnical dataComponent sizingDiagnostics Information
Trip	Diagnosis
HF04	Data processing error: Illegal slot instruction
	The <i>HF04</i> trip indicates that an illegal slot instruction has occurred. This trip indicates that the control PCB on the drive has failed. Recommended actions: Hardware fault – Contact the supplier of the drive
HF05	Data processing error: Undefined exception
	The <i>HF05</i> trip indicates that an undefined exception error has occurred. This trip indicates that the control PCB on the drive has failed. Recommended actions:
	Hardware fault – Contact the supplier of the drive
HF06	Data processing error: Reserved exception
	The <i>HF06</i> trip indicates that a reserved exception error has occurred. This trip indicates that the control PCB on the drive has failed.
	Recommended actions:
	Hardware fault – Contact the supplier of the drive
HF07	Data processing error: Watchdog failure
	The HF07 trip indicates that a watchdog failure has occurred. This trip indicates that the control PCB on the drive has failed
	Recommended actions:
	Hardware fault – Contact the supplier of the drive
HF08	Data processing error: CPU Interrupt crash
	The <i>HF08</i> trip indicates that a CPU interrupt crash has occurred. This trip indicates that the control PCB on the drive has failed.
	Recommended actions:
	Hardware fault – Contact the supplier of the drive
HF09	Data processing error: Free store overflow
	The <i>HF09</i> trip indicates that a free store overflow has occurred. This trip indicates that the control PCB on the drive has failed.
	Recommended actions:
	Hardware fault – Contact the supplier of the drive
HF10	Data processing error: Parameter routing system error
	The <i>HF10</i> trip indicates that a Parameter routing system error has occurred. This trip indicates that the control PCB on the
	drive has failed.
	Recommended actions:
	Hardware fault – Contact the supplier of the drive
HF11	Data processing error: Access to EEPROM failed
	The <i>HF11</i> trip indicates that access to the drive EEPROM has failed. This trip indicates that the control PCB on the drive has failed.
	Recommended actions:
	Hardware fault – Contact the supplier of the drive
HF12	Data processing error: Main program stack overflow
	The <i>HF12</i> trip indicates that the main program stack over flow has occurred. The stack can be identified by the sub-trip number. This trip indicates that the control PCB on the drive has failed.
	Sub-trip Stack
	1 Background tasks
	2 Timed tasks
	3 Main system interrupts
	Becommended at the second
	Recommended actions:
	Hardware fault – Contact the supplier of the drive
HF13	Data processing error: Firmware incompatible with hardware
	The <i>HF13</i> trip indicates that the drive firmware is not compatible with the hardware. This trip indicates that the control PCB on the drive has failed. The sub-trip number gives the actual ID code of the control board hardware.
	Recommended actions:
	Re-program the drive with the latest version of the drive firmware Hardware fault – Contact the supplier of the drive

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	agnostics	UL Information
Tr	rip						Diagnosi	s				
HF	- -14	Data proce	essing er	ror: CPU re	egister ban	k error						
		-	_		_		or has occurr	ed. This trip	indicates	that the contro	I PCB on	the drive
		Recomme	nded act	ions:								
		 Hardwa 	are fault -	- Contact th	e supplier c	of the drive	e					
HF	-15	Data proce										
		failed.			:PU divide e	error has o	occurred. Thi	s trip indicat	es that the	e control PCB o	on the driv	ve has
		Recomme	nded act	ions:								
				- Contact th		of the drive	9					
HF	-16	Data proce										
		The <i>HF16</i> 1	trip indica	ites that a R	TOS error	nas occur	red. This trip	indicates th	at the cont	trol PCB on the	e drive ha	s failed.
		Recomme	nded act	ions:								
		 Hardwa 	are fault -	- Contact th	e supplier c	of the drive	9					
HF	17	Data proce	essing er	ror: Clock	supplied to	the con	trol board is	out of spe	cification			
				ites that the drive has fai		lied to the	control boar	d logic is ou	t of specifi	cation. This tri	p indicate	s that the
		Recomme	nded act	ions:								
		 Hardwa 	are fault -	- Contact th	e supplier c	of the drive	e					
HF	- 18	Data proce	essing er	ror: Interna	al flash me	mory has	failed					
				ites that the entified by t			y has failed v	vhen writing	option mo	odule paramete	er data. Th	he reason
		Sub-tri	р				ı	Reason				
		1	Ор	tion module	initializatio	n timed o	ut					
		1 2		tion module								
			Pro	gramming	error while	writing me						
		2	Pro	ogramming ones	error while v	writing me	nu in flash					
		2 3	Pro Era Era	ogramming ones	error while vock containiock containi	writing me ng setup i ng applica	enu in flash menus failed ation menus f					
		2 3 4	Pro Era Era Inc	ogramming of ase flash blo ase flash blo orrect setup	error while ock containiock containion menu CR0	writing me ng setup i ng applica C containe	enu in flash menus failed ation menus f	ailed				
		2 3 4 5	Pro Era Era Inc	ogramming of ase flash blood ase flash bloo orrect setup orrect applie	error while on the containing of the containing	writing me ng setup i ng applica C containe u CRC co	enu in flash menus failed ation menus f ed in flash	ailed	sh			
		2 3 4 5 6	Pro Era Era Inc Inc	ogramming of ase flash blood ase flash blood orrect setup orrect applic orrect comm	error while vock containing ck containing menu CR0 cation menu	writing me ng setup ing applica C contained I CRC contained tion menu	enu in flash menus failed ation menus f ed in flash ntained in flas	ailed sh itained in fla				
		2 3 4 5 6 7	Pro Era Era Inc Inc Inc	ogramming of ase flash blo ase flash blo orrect setup orrect applic orrect commorrect commorrect	error while vock containing ck containing menu CRC cation menunon applica	writing me ng setup ing applica C contained I CRC contained tion menution menu	enu in flash menus failed ation menus f ed in flash ntained in flas i 18 CRC cor	ailed sh ntained in fla	sh			
		2 3 4 5 6 7 8	Pro Era Era Inc Inc Inc Inc	ogramming of ase flash blo orrect setup orrect applie orrect commorrect commorrect commorrect commorrect commorrect commorrect commorrect commorrect commorrect commorrect commorrect commorrect commorrect commorrect comm	error while vock containing ck containing menu CRC cation menunon applica	writing me ng setup ing applica C contained I CRC contained tion menution menu	enu in flash menus failed ation menus f ed in flash ntained in flas i 18 CRC cor i 19 CRC cor	ailed sh ntained in fla	sh			
		2 3 4 5 6 7 8 9	Pro Era Era Inc Inc Inc Inc	ogramming of ase flash blo orrect setup orrect applie orrect commorrect commorrect commorrect commorrect commorrect commorrect commorrect commorrect commorrect commorrect commorrect commorrect commorrect commorrect comm	error while vock containing containing menu CRC cation menu cation menu cation application	writing menus manufactured with the menus	enu in flash menus failed ation menus f ed in flash ntained in flas i 18 CRC cor i 19 CRC cor i 20 CRC cor	ailed sh ntained in fla	sh			
НЕ	- 19	2 3 4 5 6 7 8 9 Recomme	Pro Era Era Inc Inc Inc Inc Inc Inc Inc	ase flash blo ase flash blo orrect setup orrect applic orrect commorrect commorrect commorrect orrect commorrect commorrect commorrect commorrect commorrect commorrect commorrect commonrect commonrect commonrect commons:	error while vock containion containion menu CRC cation menu non application ap	writing ments and setup in the	enu in flash menus failed ation menus f ed in flash ntained in flas i 18 CRC cor i 19 CRC cor i 20 CRC cor	ailed sh ntained in fla ntained in fla	sh			
НЕ	- 19	2 3 4 5 6 7 8 9 Recomme • Hardwa	Pro Era Era Inc Inc Inc Inc Inc Era Era Era Inc Era Era Era Era Era Era Era Era Era Era	agramming of ase flash blo ase flash blo orrect setup orrect commo	error while vock containion of containion application	writing meng setup in application menution menution menution f the drive	enu in flash menus failed ation menus f ed in flash ntained in flas i 18 CRC cor i 19 CRC cor i 20 CRC cor	ailed sh ntained in fla ntained in fla	sh			
НЕ	- 19	2 3 4 5 6 7 8 9 Recomme • Hardwa	Pro Era Era Inc Inc Inc Inc Inc Era Inc Inc Inc Inc Inc Inc Inc Inc Inc Inc	ogramming of ase flash blood ase flash blood ase flash blood orrect setup orrect commorr	error while vock containion of containion application	writing meng setup in application menution menution menution f the drive	enu in flash menus failed ation menus f ed in flash ntained in flas i 18 CRC cor i 19 CRC cor i 20 CRC cor	ailed sh ntained in fla ntained in fla	sh			
Н	- 19	2 3 4 5 6 7 8 9 Recomme • Hardwa Data proce The HF19 to	Pro Era Era Inc Inc Inc Inc Inc Era Inc Inc Inc Inc Inc Inc Inc Inc Inc Inc	ogramming of ase flash blood ase flash blood ase flash blood orrect setup orrect commorr	error while vock containion of containion application	writing meng setup in application menution menution menution f the drive	enu in flash menus failed ation menus f ed in flash ntained in flas i 18 CRC cor i 19 CRC cor i 20 CRC cor	ailed sh ntained in fla ntained in fla	sh			
НЕ	- 19	2 3 4 5 6 7 8 9 Recomme Hardwa Data proce The HF19 to Recomme Recomme	Era Era Inc Inc Inc Inc Inc Inc Inc Inc Inc Inc	ogramming of ase flash blood ase flash blood ase flash blood orrect setup orrect commorr	error while ock containing the containing of the	writing meng setup ing application contained a CRC contained a CRC contained a CRC contained a CRC contained at the contained at the driven contained	enu in flash menus failed ation menus f ed in flash ntained in flas i 18 CRC cor i 19 CRC cor i 20 CRC cor ce has failed rive firmware	ailed sh ntained in fla ntained in fla	sh			
	F19 F20	2 3 4 5 6 7 8 9 Recomme Hardwa Data proce The HF19 to Recomme Recomme Recomme Hardwa	Era Era Inc Inc Inc Inc Inc Inc Inc Inc Inc Inc	ogramming of ase flash blood ase flash blood ase flash blood orrect setup orrect commorr	error while ock containing the containing of the	writing meng setup in a population menu	enu in flash menus failed ation menus f ed in flash ntained in flas i 18 CRC cor i 19 CRC cor i 20 CRC cor ce has failed rive firmware	ailed sh ntained in fla ntained in fla ntained in fla has failed.	sh			
		2 3 4 5 6 7 8 9 Recomme Hardwa Data proce Recomme Recomme Hardwa Data proce Hardwa Data proce	Production Production	ogramming of ase flash blood ase flash blood ase flash blood orrect setup orrect applied orrect commorrect com	error while vock containion of containion application	writing meng setup in application menution menution menution menution the driver on th	enu in flash menus failed ation menus f ed in flash ntained in flas i 18 CRC cor i 19 CRC cor i 20 CRC cor re has failed rive firmware	ailed sh stained in fla stained in fla stained in fla has failed.	sh sh	The ASIC vers	ion can be	e identified
		2 3 4 5 6 7 8 9 Recomme Hardwa Data proce Recomme Recomme Hardwa Data proce The HF19 to	Pro Era Era Inc Inc Inc Inc Inc Inc Inc Inc Inc Inc	ogramming of ase flash blood ase flash blood ase flash blood orrect setup orrect commorr	error while vock containion of containion application	writing meng setup in application menution menution menution menution the driver on th	enu in flash menus failed ation menus f ed in flash ntained in flas i 18 CRC cor i 19 CRC cor i 20 CRC cor re has failed rive firmware	ailed sh stained in fla stained in fla stained in fla has failed.	sh sh	The ASIC vers	ion can be	e identified
		2 3 4 5 6 7 8 9 Recomme • Hardwa Data proce • Re-pro • Hardwa Data proce The HF20 to from the surfrom	Pro Era Era Inc Inc Inc Inc Inc Inc Inc Inc Inc Inc	ogramming of ase flash blood ase flash blood ase flash blood orrect setup orrect commorr	error while vock containing the containing of th	writing meng setup of application menual of the drive patible with a continuous continuo	enu in flash menus failed ation menus f ed in flash ntained in flas i 18 CRC cor i 19 CRC cor i 20 CRC cor cre has failed rive firmware th the hardw	ailed sh stained in fla stained in fla stained in fla has failed.	sh sh	The ASIC vers	ion can be	e identified
HF		2 3 4 5 6 7 8 9 Recomme • Hardwa Data proce • Re-pro • Hardwa Data proce The HF20 to from the surfrom	Pro Era Era Inc Inc Inc Inc Inc Inc Inc Inc Inc Inc	ogramming of ase flash blood ase flash blood ase flash blood ase flash blood ase flash blood ase flash blood ase flash blood ase flash blood ase flash blood are to a second as the contact the contac	error while vock containing the containing of th	writing meng setup of application menual of the drive patible with a continuous continuo	enu in flash menus failed ation menus f ed in flash ntained in flas i 18 CRC cor i 19 CRC cor i 20 CRC cor cre has failed rive firmware th the hardw	ailed sh stained in fla stained in fla stained in fla has failed.	sh sh	The ASIC vers	ion can be	e identified
HF	F20	2 3 4 5 6 7 8 9 Recomme • Hardwa Data proce The HF19 to Recomme • Re-pro • Hardwa Data proce The HF20 to from the su Recomme • Hardwa	Production Production	ogramming of ase flash blood ase flash blood ase flash blood orrect setup orrect applie orrect comm	error while vock containing the containing of th	writing meng setup of application menual of the drive patible with a continuous continuo	enu in flash menus failed ation menus f ed in flash ntained in flas i 18 CRC cor i 19 CRC cor i 20 CRC cor cre has failed rive firmware th the hardw	ailed sh stained in fla stained in fla stained in fla has failed.	sh sh	The ASIC vers	ion can be	e identified
HF	F20	2 3 4 5 6 7 8 9 Recomme • Hardwa Data proce • Hardwa Data proce • Hardwa Data proce • Hardwa Hardware • Hardwa Recomme	Production of the product of the pro	ogramming of ase flash blood ase flash blood ase flash blood orrect setup orrect applie orrect comm	error while vock containing the containing of th	writing meng setup in a papilical contained in CRC contained in CRC contained in CRC contained in CRC contained in the driven in the driven in the driven in the driven in the driven is not contained in the driven	enu in flash menus failed ation menus f ed in flash ntained in flas i 18 CRC cor i 19 CRC cor i 20 CRC cor c. re has failed rive firmware th the hardw	ailed sh stained in fla stained in fla stained in fla has failed.	sh sh	The ASIC vers	ion can be	e identified

Safety information	Introduction			Electrical Getting Installation started	Optimization	Parameters	Technical data	Component sizing Diago	nostics UL Information
Tr	ip				Diagnosi	s			
I/O Ove	erload	Digital output	overload						
20	6	the limit. A trip Maximum The combi The combi Recommende	is initiated if one o output current from ned maximum out ned maximum out d actions:	nat the total current or more of the follow on one digital output put current from out put current from out	ing conditions is 100 mA. puts 1 and 2	s: is 100 mA		ท the digital outpเ	ut has exceeded
Industra	Too Hot	Check conCheck out	I loads on digital o trol wiring is correct out wiring is undan	ct naged					
inductor	Too Hot		ductor has overlo		thormal avarl	and based o	n the Pat	ad Current (Dr 05	007) and the
9:	3	Inductor Them value. The driv Recommende Check the	nal Time Constant e will trip on Induc d actions: load / current throu	s a Regen inductor (Pr 04.015). Pr 04.0 tor Too Hot when P ugh the inductor ha r 05.007) is not zero	119 displays the r 04.019 gets a not changed	ne inductor t to 100 %.			
Inter-co	onnect		•	connection cable					
10		The sub-trip "x be noted that t	x.0.00" indicates w nis trip is also initia	which power module ated if the communic modules that are	has detected cation fails eit	her when a	rectifier sig	•	
Isla	and		on detected in Re						
16	60	continued to o The sub-trips i Sub-trip 1	perate. Island detection	for the trip: system has been eynchronization volta	De enabled and c	scription detected an	island con	dition	
		Recommende Check the	d actions:	ating its own supply		ion for more	than 2.0	S.	
Keypac	d Mode			en the drive is rec					
		selector (21.00	3 = 4 or 6 if motor	that the drive is in k map 2 is selected]					
34	4		keypad and reset	(01.014) to select th	ne reference f	rom another	source		
Line	Sync			supply has been lo					
		The Line Sync	trip indicates that	the inverter has los	t the synchroi	nization with	the ac su	pply in Regen mo	de.
39	9	Recommende	d actions:						
				nnections to the Re	gen drive				
	Brake	_	•	e trip indicates that t	oraking IGBT	over-tempe	rature has	been detected ba	ased on software
10	דע	Recommende		is areator than area	aual to the m	inimum roci	etanoo vol	ua.	
		- Check bla	any resistor value	is greater than or e	quai to trie m	iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	statice vali	uc	

Trip OHt Control Control stage over temperature This OHt Control trip indicates that a control stage over-temperature has been detected. From the some them is to control system to control stage over-temperature based on a software thermal includes a thermal protection system to protect the DC bus components within the drive. This includes the control system to protect the DC bus components within the drive. This includes the control system to protect the DC bus components within the drive. This includes the control system to protect the DC bus components within the drive.	sub-trip 'xxyzz', the											
This OHt Control trip indicates that a control stage over-temperature has been detected. From the sometimes of the control trip indicates that a control stage over-temperature has been detected. From the sometimes of the control is identified by 'zz'. Source	sub-trip 'xxyzz', the											
Thermistor location is identified by 'zz'. Source xx y zz Description	sub-trip 'xxyzz', the											
Control system 00 0 01 Control board thermistor 1 over temperature Control system 00 0 02 Control board thermistor 2 over temperature Control system 00 0 03 I/O board thermistor over temperature Recommended actions: Check enclosure / drive fans are still functioning correctly Check enclosure ventilation paths Check enclosure door filters Increase ventilation Reduce the drive switching frequency Check ambient temperature OHt dc bus DC bus over temperature The OHt dc bus trip indicates a DC bus component over temperature based on a software thermal rincludes a thermal protection system to protect the DC bus components within the drive. This include												
Control system 00 0 02 Control board thermistor 2 over temperature Control system 00 0 03 I/O board thermistor over temperature Recommended actions: Check enclosure / drive fans are still functioning correctly Check enclosure ventilation paths Check enclosure door filters Increase ventilation Reduce the drive switching frequency Check ambient temperature OHt dc bus DC bus over temperature The OHt dc bus trip indicates a DC bus component over temperature based on a software thermal rincludes a thermal protection system to protect the DC bus components within the drive. This include												
Control system 00 0 03 I/O board thermistor over temperature Recommended actions: Check enclosure / drive fans are still functioning correctly Check enclosure ventilation paths Check enclosure door filters Increase ventilation Reduce the drive switching frequency Check ambient temperature OHt dc bus DC bus over temperature The OHt dc bus trip indicates a DC bus component over temperature based on a software thermal rincludes a thermal protection system to protect the DC bus components within the drive. This include												
Recommended actions:												
Recommended actions:												
The OHt dc bus trip indicates a DC bus component over temperature based on a software thermal rincludes a thermal protection system to protect the DC bus components within the drive. This includes												
includes a thermal protection system to protect the DC bus components within the drive. This includes												
output current and DC bus ripple. The estimated temperature is displayed as a percentage of the tri If this parameter reaches 100 % then an <i>OHt dc bus</i> trip is initiated. The drive will attempt to stop the If the motor does not stop in 10 seconds the drive trips immediately.	des the effects of the ip level in Pr 07.035 .											
Source xx y zz Description	es trip with sub-trip 0											
Control system 00 2 00 DC bus thermal model gives trip with sub-trip of	0											
From this source the estimated temperature as a percentage of trip is not available and the trip is in	It is also possible in a multi-power module system for DC bus over-temperature to be detected from within the power stage. From this source the estimated temperature as a percentage of trip is not available and the trip is indicated as follows:											
Source xx y zz Description												
Control system 01 0 00 Power stage gives trip with sub-trip 0												
Recommended actions: Check the AC supply voltage balance and levels Check DC bus ripple level Reduce duty cycle Reduce load												
OHt Inverter Inverter over temperature based on thermal model	hammadal Tha acch											
This trip indicates that an IGBT junction over-temperature has been detected based on a firmware the trip indicates which model has initiated the trip in the form xxyzz as given below:	nermai modei. The sub-											
Source xx y zz Description												
Control system 00 1 00 Inverter thermal model												
Control system 00 3 00 Braking IGBT thermal mod	del											
Recommended actions with sub-trip 100:												
Reduce the selected drive switching frequency Ensure Auto-switching Frequency Change Disable (05.035) is set to Off Reduce duty cycle Increase acceleration / deceleration rates Reduce motor load Check DC bus ripple Ensure all three input phases are present and balanced Percommended actions with sub-trip 200:												
Recommended actions with sub-trip 300:												

Safety Product Mechanical Electrical Getting Technical UL System Component Introduction Optimization Parameters Diagnostics information Information design Installation Installation started sizing Information data Trip Diagnosis **OHt Power** Power stage over temperature This trip indicates that a power stage over-temperature has been detected. The sub-trip "xxyzz" indicates which thermistor is indicating the over-temperature. The thermsitor numbering is different for a single module type drive (i.e. no parallel board fitted) and a multi-module type drive (i.e. parallel board fitted with one or more power modules) as shown below: Single module type drive: Source Description XX У ZZ Power system 01 0 Thermistor location defined by zz in the power board ZZ Rectifier number Power system 01 ZZ Thermistor location defined by zz in the rectifier number Multi-module type system: Source Description ΖZ XX 0 Power system power module number 01 U phase power device Power system power module number 0 02 V phase power device 0 03 W phase power device Power system power module number 22 Power system 0 04 Rectifier power module number 0 Power system power module number 05 General power system Power system power module number 0 00 Braking IGBT Note that the power module that has caused the trip cannot be identified except for the braking IGBT temperature measurement Recommended actions: Check enclosure / drive fans are still functioning correctly Force the heatsink fans to run at maximum speed Check enclosure ventilation paths Check enclosure door filters Increase ventilation

- Reduce the drive switching frequency
- Reduce duty cycle
- Decrease acceleration / deceleration rates
- Reduce motor load
- Check the derating tables and confirm the drive is correctly sized for the application.
- Use a drive with larger current / power rating

OI ac Instantaneous output over current detected

> The instantaneous drive output current has exceeded VM_DRIVE_CURRENT_MAX. This trip cannot be reset until 10 s after the trip was initiated.

Source ΖZ Description XX У Control system 00 0 Instantaneous over-current trip when the measured AC 00 current exceeds VM_DRIVE_CURRENT[MAX]. Power module 0 Power system number

3

Recommended actions:

- Check for short circuit on the Regen component circuitry
- Check DC connections: Regen to motoring drive for short circuit
- Check the synchronisation status
- Is power cable length within limits for the frame size

Safety nformation	Introduction	Product System Information design	Mechanica Installation				nization	Parameters	Technical data	Component sizing		UL Informatio			
Tr	ip					Di	agnosi	s							
	rake	Braking IGBT ove	r current d	letected: s	short circu				ing IGBT	activated					
		The OI Brake trip in activated. This trip							BT or brak	ing IGBT pr	otection has t	een			
		Source	x	x	У	ZZ			De	scription					
4	4	Power system	Power num		0	00	Brakir	ng IGBT inst	tantaneous	s over-curre	ent trip				
		Recommended ac	sistor wirin resistor val resistor ins	ue is greatulation											
OI	dc	Power module over						_							
		The <i>OI dc</i> trip indic shows where the tr							0			elow			
		Source		XX	C		у	zz							
10	109				0	00	_								
		Recommended ac		- Inout				00							
		 Disconnect the motor cable at the drive end and check the motor and cable insulation with an insulation tester Replace the drive 													
OI Sn	ubber	Snubber over-current detected													
		The <i>OI Snubber</i> trip indicates that an over-current condition has been detected in the rectifier snubber circuit. The reaso for the trip can be identified by the sub-trip number.													
		Source	хх	у		zz			De	scription					
		Power system	01	Rectifier r	number*	00	Rectif	ier snubber	over-curre	ent trip detec	cted.				
9	2	* For a parallel pow detected the fault.	er-module	system the	e rectifier r	number	will be o	one as it is r	not possib	le to determ	ine which rec	tifier ha			
		Recommended ac													
		Ensure the motCheck for supp		-	not exceed	d the ma	aximum	for selected	d switching	g frequency					
		Check for suppCheck the moteFit an output lin	or and moto	or cable in	sulation wi										
Option	Disable	Option module do	es not ack	nowledge	during d	rive mo	de cha	ngeover							
		During drive mode system between the produced.	changeove	r option m	odules mu	st ackno	owledge	e that they h							
21	15	Recommended tri	p:												
		Reset the trip													

If the trip persists replace the option module

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
--------------------	--------------	---------------------	---------------	----------------------------	----------------------------	-----------------	--------------	------------	----------------	------------------	-------------	-------------------

Trip Diagnosis

Out Phase Loss

Output phase loss detected

The Out Phase Loss trip indicates that a phase loss has been detected at the drive output.

Note that if Reverse Output Phase Sequence (05.042) = 1 the physical output phases are reversed, and so sub-trip 3 refers to physical output phase V and sub-trip 2 refers to physical output phase W.

98

Sub-trip	Reason
1	U phase detected as disconnected when drive enabled to run
2	V phase detected as disconnected when drive enabled to run
3	W phase detected as disconnected when drive enabled to run
4	Output phase loss detected when the drive is running

Recommended action:

- Check motor and drive connections
- To disable the trip set Output Phase Loss Detection Enable (06.059) = 0

Over Volts

DC bus voltage has exceeded the peak level or maximum continuous level for 15 seconds

The Over Volts trip indicates that the DC bus voltage has exceeded the VM_DC_VOLTAGE[MAX] or

VM_DC_VOLTAGE_SET[MAX] for 15 s. The trip threshold varies depending on voltage rating of the drive as shown below.

Voltage rating	VM_DC_VOLTAGE[MAX]	VM_DC_VOLTAGE_SET[MAX]
200	415	410
400	830	815
575	990	970
690	1190	1175

Sub-trip Identification

2

Source	xx	у	zz
Control system	00	0	01: Instantaneous trip when the DC bus voltage exceeds VM_DC_VOLTAGE[MAX].
Control system	00	0	02: Time delayed trip indicating that the DC bus voltage is above VM_DC_VOLTAGE_SET[MAX].

Recommended actions:

- Increase deceleration ramp (Pr 00.004)
- · Decrease the braking resistor value (staying above the minimum value)
- · Check nominal AC supply level
- Check for supply disturbances which could cause the DC bus to rise
- · Check motor insulation using an insulation tester

Phase Loss

Supply phase loss

This trip indicates that the drive has detected an input phase loss or large supply imbalance. Phase loss can be detected directly from the supply where the drive has a thyristor base charge system (Frame size 7 and above). If phase loss is detected using this method the drive trips immediately and the xx part of the sub-trip is set to 01. In all sizes of drive phase loss is also detected by monitoring the ripple in the DC bus voltage in which case the drive attempts to stop the drive before tripping unless bit 2 of *Action On Trip Detection* (10.037) is set to one. When phase loss is detected by monitoring the ripple in the DC bus voltage the xx part of the sub-trip is zero.

Source	xx	У	ZZ
Control system	00	0	00: Phase loss detected from DC bus ripple
Power system (1)	Power module number	Rectifier number (2)	00: Phase loss detected directly from the supply

32

- (1) Input phase loss detection can be disabled when the drive required to operate from the DC supply or from a single phase supply in *Input Phase Loss Detection Mode* (06.047).
- (2) For a parallel power-module system the rectifier number will be one as it is not possible to determine which rectifier has detected the fault.

This trip does not occur in Regen mode.

Recommended actions:

- Check the AC supply voltage balance and level at full load.
- · Check the DC bus ripple level with an isolated oscilloscope
- · Check the output current stability
- Reduce the duty cycle
- Reduce the motor load
- Disable the phase loss detection, set Pr 06.047 to 2.
- Check for mechanical resonance with the load

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electri Installa		Getting started	Optin	nization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
Tr	rip							Di	agnosi	s				
Power	Comms	A Power C	omms t	rip indicates	s a con	nmu	nications	s prol	olem w	ithin the po	wer syste	m of the dri	ive	
				o indicates a sub-trip num		unica	ations pro	blem	within t	he power sy	stem of th	e drive. The	reason for t	the trip can
		Type of	drive	хх			У					ZZ		
9	00	Control s	system	Power mo numbe		Rec	tifier num	nber*	00: Ex		municatio	ns errors det	ected by the	e rectifier
		detected th	e fault.		/stem t	he re	ectifier nu	mber	will be	one as it is r	not possibl	e to determir	ne which re	ctifier has
		Recomme												
Dowe	v Doto			- Contact the			the drive	9						
Powe	r Data	_		figuration d			an error ir	the (configur	ation data s	tored in th	a nowar evet	em	
		Sour		XX	iat tilei			ZZ	Jornigui	alion data s			.cm.	
		Control s	system	00		() ()2				•		
		Control s	system	00		() ()3					an the spac	e
		Control s	system	00		() (04	The size	ze of the tab	le given in	the table is	incorrect.	
		Control s	system	00		() ()5	Table (CRC error.				
22	20	Control s	system	00		() (06	the tab	ole is too low ed that inclu	as it is not possible to determine which rectified on data stored in the power system. Description o data table to be uploaded to the control boar or system data table is bigger than the space in the control pod to store it.		or is	
		Power s	ystem	Power mo numbe		() (00	has an	error. (For	a multi-po	wer module o	drive this ind	
		Power s	ystem	Power mo numbe		() (01	on pov	ver up has a	ın error.			
		Power s	ystem	Power mo numbe		C) (02		ot match the				
		Recomme	nded act	tions:										
		• Hardwa	are fault -	- Contact the	e suppl	ier of	f the drive	Э						
Power Do	own Save	Power dov	vn save	error										
		The Power volatile me		ave trip indic	ates th	at ar	error ha	s bee	n detec	ted in the po	ower dowr	save param	eters saved	d in non-
3	37	Recomme	•	ione:										
					nm 000) to e	neure th	at the	trin doe	en't occur tl	he nevt tim	ne the drive i	s nowered i	ın
PS	SU	Internal po				<i>,</i> 10 0	insure the	at tile	trip doc	2311 t Occur ti	ic rickt till	ic the drive is	3 powercu t	<i>μ</i> ρ.
					or more	e inte	ernal pow	er su	oply rail	s are outsid	e limits or	overloaded.		
		Sour	ce	хх			у				Des	cription		
		Control s	system	00			0		Interna	al power sup	ply overlo	ad		
		Power s	ystem	Power mo		Rec	tifier num	nber*	Rectifi	er internal p	ower supp	ly overload		
,	5	* For a para		er-module sy	stem t	he re	ectifier nu	mber	will be	zero as it is	not possib	le to determi	ine which re	ectifier has
		Recomme	nded ac	tions:										
		 Remov 	e encode	tion modules er connection within the dri	n and p	erfor	m a rese	t	e suppli	er				

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
Tr	ip						Diagnosi	s				
PSU	24V	24V intern	al power	supply ov	erload							
ę)	consists of Recomme Reduce Provide	the drive nded act the load an exte	digital outp ions: and reset	uts and ma	in encode	nas exceeded r supply. ol terminal 2	the internal	l 24 V pow	er supply lin	nit. The user	load
Rating M	lismatch					oltage o	r current rati	ng mismat	ch			
22		The Rating This trip is voltage or o Recomme • Ensure	Mismato only appl current ra nded act	th trip indica icable to mo itings within ition:	tes that the odular drive the same r	re is a vols that are nulti-modular drive	tage rating or connected in ule drive system system are o	r current rati parallel. A em is not all	ing misma mixture of lowed and	power modu will cause a	lles with diffe Rating Misn	erent natch trip.
Rectifie	r Set-up						ti-power mod	dule system	1.			
	4	A rectifier h	nas not be	een set-up o	correctly in a		wer module s					
Rese	erved	Reserved	trips	-	-							
104 - 104 - 161- 170- 22	5 02 - 108 -168 -173 22	These trip programs.	numbers	are reserve	d trip numb	ers for fut	ure use. The	se trips shou	uld not be	used by the	user applica	tion
	-246											
Slot Ap		The Slot Ap and 20. The Recomme	op Menu e sub-trip nded act	number inc	s that more dicates whic	than one	option slot has been is configured	allowed to	customize	the menus.		
SlotX D	ifferent						13 comigarea	to custorniz	the app	ication men	15 TO, 15 am	u 20
SlotX D	lifferent	The SlotX I	Different to	•	s that the op	tion mod	ule in option s					alled when
		1		module wa	e inetallad :	reviouely						
		2	A r	nodule with d so default	the same ic	lentifier is s have be	installed, but en loaded for	this menu.				
20)4)9 14	3 4	cha A r	anged, and nodule with	so default p	arameter dentifier is	s installed, bu s have been s installed, bu	loaded for the the the the the the the the the the	nis menu. and applic	cations menu	ı for this opti	
		>99	Sh	ows the ide	•		parameters previously ins		oaueu IOI	uicse iiielius). 	
		 Confirm perform 	f the pown that the	ver, ensure t currently in save in Pr r	istalled opti im.000.	on modul	dules are inst e is correct, e					
SlotX	Error	-		option slot					. , .			
20)2)7 12	error can b Recomme	e identifie nded act	ed by the su	b-trip numb	er.	in option slot	X on the dri	ive has de	tected an eri	ror. The reas	son for the

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	iagnostics	UL Information
Tr	ip						Diagnos	is				
Slot	X HF	Option mo	dule X h	nardware fa	ult							
							•	on the drive	e has indic	ated a hardwa	re fault. T	he possible
				an be identif	led by the s	ub-trip nu		Bassan				
		Sub-tri	<u> </u>					Reason				
		1		e module ca				ion has not	haan aunn	lied or the tabl	aa ayyanlid	ad ara
		2		•							es supplie	su are
		3								or this module		
		4	Th	e module ha	as not indica	ated that i	t is running c	orrectly duri	ing drive p	ower-up		
20	00	5					wer-up or it h					
	05 10	6	Th	e module ha	as not indica	ated that i	t has stopped	d accessing	drive para	meters during	a drive m	ode
2	10	7	Th	e module ha	as failed to a	acknowle	dge that a red	quest has be	een made	to reset the dri	ve proces	sor
		8	Th	e drive faile	d to correctl	y read the	e menu table	from the mo	odule durir	ng drive power	up	
		9	Th	e drive faile	d to upload	menu tab	les from the	module and	timed out	(5 s)		
		10	Ме	enu table CF	C invalid							
		Recomme	nded ac	tions:								
		Recommended actions: • Ensure the option module is installed correctly										
		 Replace the option module Replace the drive 										
Cloty N	ot Eittod				V has been		4					
SIOLA N	ot Fitted			option slot				n slot X on t	he drive h	as been remov	ed since	the last
_		power up.	1017 11101	a trip irraioat	oo alaa alo	option me	radio in optio			30 00011 101110 1	04 011100	tilo laot
	03 08	Recomme	nded ac	tions:								
	13		-	on module is		orrectly.						
				otion module the removed		dule is no	longer regui	red nerform	a save fur	nction in Pr mr	n 000	
SlotX W	atchdog			tchdog fun	•		Torigor Toqui	roa ponomi	u 0010 101	100.011 111 1 1111		
		The SlotX I	Vatchdo	g trip indicat	es that the	option me	odule installe	d in Slot X h	as started	the option was	tchdog fui	nction and
	01 06			e the watch	dog correctl	у.						
	11	Recomme										
Soft	Start		•	tion module	coff start	monitor	failed					
3011	Start		-	ed to close				led to close	or the soft	start monitorir	na circuit l	has failed
22	26	Recomme							27 11.0 0010	2.6.1.101110111	0 0 1	
		 Hardwa 	are fault	 Contact th 	e supplier c	of the driv	e					
Store	ed HF			occurred d								
								as occurred	and the d	rive has been	power cy	cled.
22	21			r identifies t	ne HF trip i.	e. stored	HF.17.					
		Recomme	nded ac	tions:								

Enter 1299 in Pr mm.000 and press reset to clear the trip

Safety	Introduction				Electrical	Getting	Optimiza	tion	Parameters	Technical	Component	Diagnostics	UL
information	ma o a a o a o a o a	Information de	sign In	stallation	nstallation	started	Орини			data	sizing	goooo	Information
Tr	ip						Diagr	nosi	s				
Sub-arr	ay RAM	RAM allocation											
		•								•	•		
		number.	or out til	p mamber i	io giveii.	1110 000 01	ip io odiot	aiato	a ao (paran	notor size)	· (paramet	ici type) · ou	b array
		Paramet	er size	Va	lue			Pa	rameter ty	ne	Value		
		1 b			000				Volatile	pu	0		
		8 b	it	20	000				User save		Value 100 e 200 Value 1 2 3 4 5 6 7 8 9 ermistor location can be iden zz control board thermistor 1 control board thermistor 2 3: I/O board thermistor e feedback provided via pow 23 for direct ELV temperature		
		16 !	oit	30	000			Pov	ver-down sa	ave			
		32 1	oit	40	000		J						
		64 l	oit	50	000								
22	27			•									
	•		S	Sub-array				Me	nus	V	alue		
		Applications r	nenus					18	-20		1		
		Derivative ima	age					2	.9		2		
		User program	image					3	0		3		
		Option slot 1							5				
		Option slot 1		ons					25				
		Option slot 2							6				
		Option slot 2		ons					26				
		Option slot 3	•						7 ?7				
		Option slot 3	аррисаці	JIIS					.7		9		
Temp Fe	edback	Internal therm	nistor ha	s failed									
		sub-trip number	er.	r. xx y							ZZ		
		Control boa	ard	rd 00 00					02:	Control b	oard therm	nistor 2	
21	18	Power syste	em	Power mod number		0					Value Value 10 100 200 Value 1 2 3 4 5 6 7 8 9 Or location can be identified value Iboard thermistor 1 Iboard thermistor 2 board thermistor 2 board thermistor back provided via power sedirect ELV temperature feeds sible to determine which resists of Action On Trip Detection value 15 on the position feedbattrip number. tor connected to analog in		
		Power syste	em P	Power mod number	IRE	ctifier num	nber* Alv	ways	s zero				
		* For a parallel detected the fa		nodule sys	stem the I	rectifier nu	mber will	be o	one as it is	not possibl	e to determ	nine which re	ctifier ha
		Recommende	d action	ıs:									
		• Hardware	fault – C	ontact the	supplier	of the drive	е						
Th Bra	ke Res	Brake resisto	r over te	mperatur	е								
			e brakin										
1	0	Recommende		ıs:									
		Check bra											
					is greate	than or e	qual to th	ie mi	inimum resi	stance val	ue		
		 Check bra 	king resi	stor insula	tion								
Th Shor	t Circuit	Motor thermis	stor sho	rt circuit									
		This trip indica has a low impe										ition feedbac	k interfa
		Sub-trip						F	Reason				
•	_	3		g Input 3 I nan 50 Ω.	Mode (07	.015) = 7 a	and the re	esista	ance of the	thermistor	connected	to analog inp	out 3 is
2	อ	4		nermistor S P1 position						stance of t	Value 1 2 3 4 5 6 7 8 9 tor location can be identified by zz bl board thermistor 1 bloard thermistor 2 board thermistor 2 board thermistor black provided via power syste direct ELV temperature feedback direct ELV temperature feedback of Action On Trip Detection (10.00) value	I to the	
			-	-			3 10 1000 1	nun	00 12.				
		Recommende					3 10 1000 1	iiuii	00 12.				

Check thermistor continuity Replace motor / motor thermistor

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information			
Tı	rip		Diagnosis otor thermistor over-temperature												
Therr	mistor	Motor the	rmistor c	ver-tempe	rature										
		or terminal	15 on th		erminal (15	way D-ty	or connected pe connector)		, ,	. ,					
		Sub-tr	ip				I	Reason							
		3	Tri	p initiated fr	om analog i	nput 3									
2	24	4	Tri	p initiated fr	om P1 posi	ion feed	back interface	;							
		Check	motor ter	tions: mperature d level (07.0 or continuity	,										
Unde	efined	Drive has	tripped a	and the cau	se of the tr	ip is Un	defined								
1.	10	The Undef	•		t the power	system h	nas generated	d but did not	identify th	e trip the pov	ver system.	The cause			
·	Recommended actions:														
Hee	r 24V					- ' '	nolo (4.2)								
USel	Z4 V			s not prese			nais (1,2) r 06.072) is s	et to 1 or / o	w I Inder \	/oltage Thre	shold Selec	t (06 067)			
			•	,	,,,	`	rminals 1 and		W Onder v	onage Tille.	srioid Selec	(00.007)			
9	01	Recomme	nded ac	tions:											
		• Ensure	the user	24 V suppl	y is present	on contr	ol terminals 1	(0 V) and 2	(24 V)						

	Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Informatio
--	--------------------	--------------	---------------------	---------------	----------------------------	----------------------------	--------------------	--------------	------------	----------------	------------------	-------------	------------------

Trip		Diagnosis	
User Program	On board user		
	_	m trip indicates that an error has been detected in the by the sub-trip number.	e onboard user program image. The reason for the trip
	Sub-trip	Reason	Comments
	1	Divide by zero	
	2	Undefined trip	
	3	Attempted fast parameter access set-up with non- existent parameter	
	4	Attempted access to non-existent parameter	
	5	Attempted write to read-only parameter	
	6	Attempted and over-range write	
	7	Attempted read from write-only parameter	
	30	The image has failed because either its CRC is incorrect, or there are less than 6 bytes in the image or the image header version is less than 5.	Occurs when the drive powers-up or the image is programmed. The image tasks will not run
	31	The image requires more RAM for heap and stack than can be provided by the drive.	As 30
	32	The image requires an OS function call that is higher than the maximum allowed	As 30
	33	The ID code within the image is not valid	As 30
	40	The timed task has not completed in time and has been suspended	
040	41	Undefined function called, i.e. a function in the host system vector table that has not been assigned.	As 40
249	52	Customized menu table CRC check failed	As 30
	53	Customized menu table changed	Occurs when the drive powers-up or the image is programmed and the table has changed. Defaults are loaded for the derivative menu and the trip will keep occurring until drive parameters are saved.
	61	The option module installed in slot 1 is not allowed with the derivative image	As 30
	62	The option module installed in slot 2 is not allowed with the derivative image	As 30
	63	The option module installed in slot 3 is not allowed with the derivative image	As 30
	64	The option module installed in slot 4 is not allowed with the derivative image	As 30
	70	An option module that is required by the derivative image is not installed in any slot.	As 30
	71	An option module specifically required to be installed in slot 1 not present	As 30
	72	An option module specifically required to be installed in slot 2 not present	As 30
	73	An option module specifically required to be installed in slot 3 not present	As 30
	74	An option module specifically required to be installed in slot 4 not present	As 30
	80	Image is not compatible with the control board	Initiated from within the image code
	81	Image is not compatible with the control board serial number	As 80
User Prog Trip		by an onboard user program	
96	This trip can be i Recommended	nitiated from within an onboard user program using actions:	a function call which defines the sub-trip number.
	Check the us	ser program	

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostic	S Information	
Tı	rip						Diagnos	is					
User	Save	User Save	error / n	ot complet	ed								
	36		•				detected in the power to the		•			•	
3	00	Recomme	nded act	tions:									
							at the trip doe ete the save l				•	up.	
Usei	r Trip	User gene	rated trip	p									
4.4	00	These trips	ese trips are not generated by the drive and are to be used by the user to trip the drive through an application program.										
	-89 -159	Recomme	ecommended actions:										
112	-133	Check	the user	program									
Voltage	e Range	Supply vo	Itage out	t of range d	letected in	Regen n	node						
							mum Voltage Iltage (03.027						
		Recomme	nded act	tions:									
	69	EnsureCheckReduct	e Pr 03.02 the supp e the leve	oly voltage in 26 and Pr 03 ly voltage well of supply 60 tage (03.00)	3.027 are se aveform us disturbance	et correct ing an os	scilloscope	ication.					
Watc	hdog			hdog has t									
		The Watch	dog trip i	ndicates tha	t the contro	l word ha	as been enab	led and has	timed out				
		Recomme	Recommended actions:										
3	30		trip will b				1 to enable the bled when the						

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
--------------------	--------------	---------------------	---------------	----------------------------	----------------------------	--------------------	--------------	------------	----------------	------------------	-------------	-------------------

Table 12-4 Serial communications look up table

Reserved 001 Over Volts Ol ac Ol Brake PSU	93 94 95	Inductor Too Hot Rectifier Set-Up	197 198	Reserved 197
OI ac OI Brake PSU	95	Rectifier Set-Up	198	<u> </u>
OI Brake PSU			. 55	Reserved 198
PSU	00	Reserved 95	199	Destination
	96	User Prog Trip	200	Slot1 HF
	97	Data Changing	201	Slot1 Watchdog
External Trip	98	Out Phase Loss	202	Slot1 Error
Reserved 7	99	Reserved 99	203	Slot1 Not installed
Reserved 8	100	Reset	204	Slot1 Different
PSU 24	101	OHt Brake	205	Slot2 HF
Th Brake Res	102	Reserved 102	206	Slot2 Watchdog
Reserved 11	103	Inter-connect	207	Slot2 Error
Reserved 12	104 - 108	Reserved 104 - 108	208	Slot2 Not installed
Reserved 13	109	OI dc	209	Slot2 Different
Reserved 14	110	Undefined	210	Slot3 HF
Reserved 15	111	Configuration	211	Slot3 Watchdog
Reserved 16	112 - 159	User Trip 112 - 159	212	Slot3 Error
Reserved 17	160	Island	213	Slot3 Not installed
Reserved 18	161 - 168	Reserved 161 - 168	214	Slot3 Different
Brake R Too Hot	169	Voltage Range	215	Option Disable
Reserved 20	170 - 173	Reserved 170 - 173	216	Slot App Menu
OHt Inverter	174	Card Slot	217	App Menu Changed
OHt Power	175	Card Product	218	Temp Feedback
OHt Control	176	Reserved 176	219	An Output Calib
Thermistor	177	Card Boot	220	Power Data
Th Short Circuit	178	Card Busy	221	Stored HF
I/O Overload	179	Card Data Exists	222	Reserved 222
OHt dc bus	180	Card Option	223	Rating Mismatch
An Input Loss 1	181	Card Read Only	224	Drive Size
An Input Loss 2	182	Card Error	225	Current Offset
Watchdog	183	Card No Data	226	Soft Start
EEPROM Fail	184	Card Full	227	Sub-array RAM
Phase Loss	185	Card Access	228 - 246	Reserved 228 - 246
Reserved 33	186	Card Rating	247	Derivative ID
Keypad Mode	187	Card Drive Mode	248	Derivative Image
Control Word	188	Card Compare	249	User Program
User Save	189	Reserved 189	250	Slot4 HF
Power Down Save	190	Reserved 190	251	Slot4 Watchdog
Reserved 38	191	Reserved 191	252	Slot4 Error
Line Sync	192	Reserved 192	253	Slot4 Not installed
User Trip 40 - 89	193	Reserved 193	254	Slot4 Different
Power Comms	194	Reserved 194	255	Reset Logs
User 24V	195	Reserved 195		
	Th Brake Res Reserved 11 Reserved 12 Reserved 13 Reserved 14 Reserved 15 Reserved 16 Reserved 17 Reserved 18 Brake R Too Hot Reserved 20 OHt Inverter OHt Power OHt Control Thermistor Th Short Circuit I/O Overload OHt dc bus An Input Loss 1 An Input Loss 2 Watchdog EEPROM Fail Phase Loss Reserved 33 Keypad Mode Control Word User Save Power Down Save Reserved 38 Line Sync User Trip 40 - 89 Power Comms	Th Brake Res	Th Brake Res	Th Brake Res

Safety	Introduction	Product	System	Mechanical	Electrical	Getting	Optimization	Parameters	Technical	Component	Diagnostics	UL
information	madadadi	Information	design	Installation	Installation	started	Optimization	1 didiliotoro	data	sizing	Diagnoonio	Information

The trips can be grouped into the following categories. It should be noted that a trip can only occur when the drive is not tripped or is already tripped but with a trip with a lower priority number.

Table 12-5 Trip categories

Priority	Category	Trips	Comments
1	Internal faults	HFxx	These indicate internal problems and cannot be reset. All drive features are inactive after any of these trips occur. If an KI-Keypad is installed it will show the trip, but the keypad will not function.
1	Stored HF trip	{Stored HF}	This trip cannot be cleared unless 1299 is entered into <i>Parameter</i> (mm.000) and a reset is initiated.
2	Non-resettable trips	Trip numbers 218 to 247, {Slot1 HF}, {Slot2 HF}, {Slot3 HF} or {Slot4 HF}	These trips cannot be reset.
3	Volatile memory failure	{EEPROM Fail}	This can only be reset if Parameter mm. 000 is set to 1233 or 1244, or if Load Defaults (11.043) is set to a non-zero value.
3	Internal 24 V power supply	{PSU 24V}	
4	NV Media Card trips	Trip numbers 174, 175 and 177 to 188	These trips are priority 5 during power-up.
5	Trips with extended reset times	{OI ac}, {OI Brake}, and {OI dc}	These trips cannot be reset until 10 s after the trip was initiated.
5	Phase loss and DC bus power circuit protection	{Phase Loss} and {Oht dc bus}	The drive will attempt to stop the motor before tripping if a {Phase Loss}. 000 trip occurs unless this feature has been disabled (see <i>Action On Trip Detection</i> (10.037). The drive will always attempt to stop the motor before tripping if an {Oht dc bus} occurs.
5	Standard trips	All other trips	

Table 12-6 DC voltage trip and restart levels

Drive voltage rating	UU trip level Vdc	UU restart level Vdc
200	175	215
400	330	425
575	435	590
690	435	590

12.5 Internal / Hardware trips

Trips {HF01} to {HF25} are internal faults that do not have trip numbers. If one of these trips occurs, the main drive processor has detected an irrecoverable error. All drive functions are stopped and the trip message will be displayed on the drive keypad. If a non permanent trip occurs this may be reset by power cycling the drive. On power up after it has been power cycled the drive will trip on Stored HF. The sub-trip code is the number of the original HF trip. Enter 1299 in mm.000 to clear the Stored HF trip.

12.6 Alarm indications

In any mode, an alarm is an indication given on the display by alternating the alarm string with the drive status string on the first row and showing the alarm symbol in the last character in the first row. If an action is not taken to eliminate any alarm except "Limit Switch" the drive may eventually trip. Alarms are not displayed when a parameter is being edited, but the user will still see the alarm character on the upper row.

Table 12-7 Alarm indications

Alarm string	Description
Brake Resistor	Brake resistor overload. <i>Braking Resistor Thermal Accumulator</i> (10.039) in the drive has reached 75.0 % of the value at which the drive will trip.
Ind Overload	Regen inductor overload. <i>Inductor Protection Accumulator</i> (04.019) in the drive has reached 75.0 % of the value at which the drive will trip and the load on the drive is > 100 %.
Drive Overload	Drive over temperature. <i>Percentage Of Drive Thermal Trip Level</i> (07.036) in the drive is greater than 90 %.
Limit Switch	Limit switch active. Indicates that a limit switch is active and that is causing the motor to be stopped.

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
--------------------	--------------	---------------------	---------------	----------------------------	----------------------------	--------------------	--------------	------------	----------------	------------------	-------------	-------------------

12.7 Status idincations

Table 12-8 Status indications

Upper row string	Description	Drive output stage
Inhibit	The drive is inhibited and cannot be run. The Safe Torque Off signal is not applied to Safe Torque Off terminals or Pr 06.015 is set to 0	Disabled
Run	The drive is active and running	Enabled
Scan	The drive is enabled in Regen mode and is trying to synchronize to the supply	Enabled
Supply Loss	Supply loss condition has been detected	Enabled
Trip	The drive has tripped and no longer controlling the motor. The trip code appears in the lower display	Disabled
Active	The Regen unit is enabled and synchronized to the supply	Enabled
Under Voltage	The drive is in the under voltage state either in low voltage or high voltage mode	Disabled

Table 12-9 Option module and NV Media Card and other status indications at power-up

indications at power-up								
First row string	Second row string	Status						
Booting	Parameters	Parameters are being loaded						
Drive param	eters are being loade	d from a NV Media Card						
Booting	User Program	User program being loaded						
User progra	m is being loaded fror	m a NV Media Card to the drive						
Booting	Option Program	User program being loaded						
	User program is being loaded from a NV Media Card to the option module in slot X							
Writing To	NV Card	Data being written to NV Media Card						
		ia Card to ensure that its copy of the se the drive is in Auto or Boot mode						
Waiting For	Power System	Waiting for power stage						
	The drive is waiting for the processor in the power stage to respond after power-up							
Waiting For	Options	Waiting for an option module						
The drive is waiting for the Options Modules to respond after power-up								
Uploading From	Options	Loading parameter database						
At power-up	At power-up it may be necessary to update the parameter database							

held by the drive because an option module has changed or because an applications module has requested changes to the parameter structure. This may involve data transfer between the drive an option modules. During this period 'Uploading From Options' is displayed

12.8 Programming error indications

The following are the error messages displayed on the drive keypad when an error occurs during programming of drive firmware.

Table 12-10 Programming error indications

Erroi String	Reason	Solution
Error	There is not enough drive memory requested by all the option modules.	Power down drive and remove some of the option modules until the message disappears.
Error	At least one option module did not acknowledge the reset request.	Power cycle drive
Error	The boot loader failed to erase the processor flash	Power cycle drive and try again. If problem persists, return drive
Error	The boot loader failed to program the processor flash	Power cycle drive and try again. If problem persists, return drive
Error	One option module did not initialize correctly. Option module did not set Ready to Run flag.	Remove faulty option module.

12.9 Displaying the trip history

The drive retains a log of the last ten trips that have occurred. *Trip 0* (10.020) to *Trip 9* (10.029) store the most recent 10 trips that have occurred where *Trip 0* (10.020) is the most recent and *Trip 9* (10.029) is the oldest. When a new trip occurs it is written to *Trip 0* (10.020) and all the other trips move down the log, with oldest being lost. The date and time when each trip occurs are also stored in the date and time log, i.e. *Trip 0 Date* (10.041) to *Trip 9 Time* (10.060). The date and time are taken from *Date* (06.016) and *Time* (06.017). The date / time source can be selected with *Date / Time Selector* (06.019). Some trips have sub-trip numbers which give more detail about the reason for the trip. If a trip has a sub-trip number its value is stored in the sub-trip log, i.e. *Trip 0 Sub-trip Number* (10.070) to *Trip 9 Sub-trip Number* (10.079). If the trip does not have a sub-trip number then zero is stored in the sub-trip log.

If any parameter between Pr **10.020** and Pr **10.029** inclusive is read by serial communication, then the trip number in Table 12-3 is the value transmitted.

NOTE

The trip logs can be reset by writing a value of 255 in Pr 10.038.

12.10 Behavior of the drive when tripped

If the drive trips, the output of the drive is disabled so the load coasts to a stop. If any trip occurs the following read only parameters are frozen until the trip is cleared. This is to help in diagnose the cause of the trip.

Parameter	Description
04.001	Current magnitude
04.002	Active current
04.017	Reactive current
05.001	Output frequency
05.002	Output voltage
05.003	Output power
05.005	DC bus voltage
07.001	Analog input 1
07.002	Analog input 2
07.003	Analog input 3

If the parameters are not required to be frozen then this can be disabled by setting bit 4 of Pr 10.037.

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
--------------------	--------------	---------------------	---------------	----------------------------	----------------------------	--------------------	--------------	------------	-------------------	------------------	-------------	-------------------

13 UL Information

13.1 UL file reference

Unidrive M Frame size 3, 4, 5, 6, 7, 8, 9, 10 and 11 are UL Listed to both Canadian and US requirements'. The UL file reference is: NMMS/7.E171230. Products that incorporate the Safe Torque Off (STO) function are Certified for Functional Safety. The UL file reference is: FSPC.E171230.

13.2 Option modules, kits and accessories

Option Modules, Control Pods, Installation Kits and other accessories for use with these drives are UL Listed.

13.3 Enclosure ratings

With the exception of free-standing cubicle drives, all models are Open Type as supplied.

The drive enclosure is not classified as a fire enclosure. A separate fire enclosure must be provided. A UL/ NEMA Type 12 enclosure is suitable.

When fitted with a conduit box the drives meet the requirements for UL Type 1. Type 1 enclosures are intended for indoor use, primarily to provide a degree of protection against limited amounts of falling dirt.

The drives meet the requirements for UL Type 12 when installed inside a Type 12 enclosure and through-hole mounted using the sealing kit and the high-IP insert (where provided).

When through-hole mounted, the drives have been evaluated as suitable for use in surrounding air temperatures up to 40 °C.

Remote Keypads are UL Type 12 when installed with the sealing washer and fixing kit provided.

When installed in a Type 1 or Type 12 enclosure, the drives may be operated in a compartment handling conditioned air.

13.4 Mounting

Drives may be surface, through-panel or tile mounted using the appropriate brackets. Drives may be mounted singly or side by side with suitable space between them (bookcase mounting).

13.5 Environment

Drives must be installed in a Pollution Degree 2 environment or better (dry, non-conductive pollution only).

The drives have been evaluated for use at ambient temperatures up to 40 °C. The drives have additionally been evaluated for 50 °C and 55 °C ambient air temperatures with a derated output.

13.6 Electrical Installation

OVERVOLTAGE CATEGORY

OVC III

SUPPLY

The drives are suitable for use on a circuit capable of delivering not more than 100,000 RMS symmetrical amperes, 600 Vac Maximum.

TERMINAL TORQUE

Terminals must be tightened to the rated torque as specified in the Installation Instructions.

WIRING TERMINALS

Drives must be installed using cables rated for 75 °C operation, copper wire only.

Where possible, UL Listed closed-loop connectors sized according to the field wiring shall be used for all field power wiring connections.

GROUND CONNECTION INSTRUCTIONS

UL Listed closed-loop connectors sized according to the field wiring shall be used for grounding connections.

BRANCH CIRCUIT PROTECTION

The fuses and circuit breakers required for branch circuit protection are specified in the Installation Instructions.

OPENING OF BRANCH CIRCUIT

Opening of the branch-circuit protective device may be an indication that a fault has been interrupted. To reduce the risk of fire or electric shock, the equipment should be examined and replaced if damaged. If burnout of the current element of an overload relay occurs, the complete overload relay must be replaced.

Integral solid state short circuit protection does not provide branch circuit protection. Branch circuit protection must be provided in accordance with the National Electrical Code (NEC), The Canadian Electrical Code, and any additional local codes.

DYNAMIC BRAKING

M100, M101, M200, M201, M300 or M400, frame sizes 1 to 4 have been evaluated for dynamic braking applications. Other drive models have not been evaluated for dynamic braking.

340

Safety information	Introduction	Product Information	System design	Mechanical Installation	Electrical Installation	Getting started	Optimization	Parameters	Technical data	Component sizing	Diagnostics	UL Information
--------------------	--------------	---------------------	---------------	----------------------------	----------------------------	--------------------	--------------	------------	----------------	------------------	-------------	-------------------

REGENERATIVE OPERATION

Drives can be configured as an AC Regenerative Unit (also known as a Regen drive). Regen operation allows bi-directional power flow to and from the AC supply. The AC supply voltage must not exceed 600 Vac.

In these systems the inverter output is connected to the AC supply via a reactor and switching frequency filter. The drives are required to be protected by listed branch fuses as specified in the installation instructions. For grid feed applications, further evaluation may be required to other standards, such as, but not limited to UL1741, CSA C22.2 No. 107.1-01, IEEE 1547 etc.

13.7 Motor overload protection and thermal memory retention

All drives incorporate internal overload protection for the motor load that does not require the use of an external or remote overload protection device. The protection level is adjustable and the method of adjustment is provided in the relevant *Control User Guide*. Maximum current overload is dependent on the values entered into the current limit parameters (motoring current limit, regenerative current limit and symmetrical current limit entered as percentage) and the motor rated current parameter (entered in amperes).

The duration of the overload is dependent on motor thermal time constant. The maximum programmable time constant depends on the drive model. The method of adjustment of the overload protection is provided.

The drives are provided with user terminals that can be connected to a motor thermistor to protect the motor from high temperature, in the event of a motor cooling fan failure.

13.8 External Class 2 supply

The external power supply used to power the 24 V control circuit shall be marked: "UL Class 2". The power supply voltage shall not exceed 24 Vdc.

13.9 Modular Drive Systems

Drives with DC+ and DC- supply connections, rated 230 V or 480 V have been investigated for use in Modular Drive Systems as inverters when supplied by the converter sections from the Unidrive-M range. In these applications the inverters are required to be additionally protected by supplemental fuses.

Alternatively, the inverters may be supplied by converter models: Mentor MP25A, 45A, 75A, 105A, 155A or 210A. Contact the supplier of the drive for more information.

13.10 Requirement for Transient Surge Suppression

This requirement only applies to Frame Size 7 drives with rated input voltage = 575 V.

TRANSIENT SURGE SUPPRESSION SHALL BE INSTALLED ON THE LINE SIDE OF THIS EQUIPMENT AND SHALL BE RATED 575 Vac (PHASE TO GROUND), 575 Vac (PHASE TO PHASE), SUITABLE FOR OVERVOLTAGE CATEGORY III, AND SHALL PROVIDE PROTECTION FOR A RATED IMPULSE VOLTAGE TO WITHSTAND VOLTAGE PEAK OF 6 kV AND A CLAMPING VOLTAGE OF MAXIMUM 2400 V.

Index

Symbols		D	
+10V user output	136	DC bus diode	66
+24V external input		DC bus voltage set point	
+24V user output		Derating	
		Destination parameter	
Numerics		Diagnostics	315
0V common	136, 138	Digital I/O 1	
_		Digital I/O 2	138
A		Digital I/O 3	138
AC and DC regen connections		Digital input	
Frame size 11D	113	Digital Input 4	
Frame size 3	106	Digital Input 5	
Frame size 4		Digital Input 6	
Frame size 5		Digital output	
Frame size 6		Drive enable	
Frame size 7 and 8		Drive features	20
Frame size 9A		F	
Frame size 9D and 10D		E	
Unidrive M Rectifier		Electrical installation	
AC Regenerative Unit		Electrical safety	
AC supply contactor		Electromagnetic compatibility (EMC)	
AC supply loss		EMC - Compliance with generic emission standard	
AC supply loss mode		EMC - General requirements	
AC supply requirements		EMC filter, removal of internal EMC filter	128
Access		EN 61800-3:2004+A1:2012	404
Advantages		(standard for Power Drive Systems)	
Air-flow in a ventilated enclosure		Enclosure Layout	
Alarm indications		Enclosure sizing	
Analog input 2		Environmental protection External charging resistor	
Analog input 3		External EMC filter	
Analog output 1		External Livio litter	00, 90
Analog output 2		F	
Auto start		Fire protection	76
Auto start		Fuse ratings	
В		Fuse types	
Behavior of the drive when tripped	339		
Brake resistor replacement		G	
		Ground connections1	15, 126, 130
C			-, -,
Cable and fuse ratings	117	Н	
Cable length		Hazardous areas	77
Cautions	8	Humidity	286
Commissioning	141	•	
Component data		I	
Component sizing		Installation, Planning	76
Conducted RF emission		Internal / Hardware trips	338
Control connections	133	IP Rating (Ingress protection)	286
Cooling	76, 286	Isolating transformer	66
Cooling method	286		
Current loop gains	143		

М		S	
Magnetic overload	311	Safety Information	76
Sizing		Sealed enclosure - sizing	
Mechanical Installation		Sequencing, Regen drive	
Menu 0 - Basic parameters		Serial communications look up table	
Menu 03 - Regen Control		Single Regen, multiple motoring system	
Menu 04 - Current control		Single Regen, single motoring system	
Menu 05 - Regen status		Sizing of a Regen system	
Menu 06 - Sequence and Clock		Status indications	
Menu 07 - Analog I/O		Status modes (Keypad and LED status)	
Menu 08 - Digital I/O		Storage	
Menu 09 - Programmable logic, motorised pot and		Supply assessment	67
binary sum	205	Supply requirements	286
Menu 10 - Status and trips	222	Supply types	117
Menu 11 - General drive set-up	234	Switching frequency emission	
Menu 12 - Threshold detectors and variable selectors .		Switching frequency filter	293, 296
Menu 14 - User PID controller		Inductor data31,	35, 291
Menu 18 - Application menu 1		Specifications	
Menu 19 - Application menu 2		Synchronisation	11
Menu 20 - Application menu 3		T	
Menus 15, 16 and 17 - Option module set-up		Т	
Mode parameter		Technical data	
Model number	15	Temperature	
Motoring drive		Thermal overload	
Commissioning		Trip categories	
Enable		Trip History	
Multiple motoring drive solution44, 46, 48, 50, 53, 58	3, 62, 65	Trip indications	315
N		U	
Nameplate description	16	Unidrive M Rectifier23	3, 44, 56
NEMA rating			,,
Notes		V	
		Variable maximums	147
0		Varistors	38, 96
Option Module	272	Data	38
Options	27	Dimensions	96
Output sharing choke	84	Voltage control mode	141
n		Voltage controller gain	143
Р		14/	
Position feedback module category parameters	272	W	
Power and current ratings		Warnings	
Power connections		Wiring guidelines	133
Single Regen, multiple motoring system 44, 46			
Single Regen, single motoring system			
Power factor correction			
Power feed-forward			
Power flow			
Precision reference Analog input 1			
Principles of operation			
Product information Programming error indications			
1 regramming error indications			
R			
Ramp Mode			
Ratings			
Regen configuration			
Regen inductor29, 43, 45, 47, 50, 53, 55,			
62, 65,			
Regen operation			
Regen system configurations			
Relay contacts	400		
Residual current device (RCD)	126		
Residual current device (RCD) Resistor sizing RFI filter	126 308		

0478-0366-04